/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include namespace sd { namespace ops { namespace helpers { void crossBatched(sd::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o); void FORCEINLINE cross(sd::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) { if (a->isR()) { auto a0 = a->e(0); auto a1 = a->e(1); auto a2 = a->e(2); auto b0 = b->e(0); auto b1 = b->e(1); auto b2 = b->e(2); o->p(Nd4jLong(0L), a1 * b2 - a2 * b1); o->p(1L, a2 * b0 - a0 * b2); o->p(2L, a0 * b1 - a1 * b0); } else { auto a0 = a->e(0); auto a1 = a->e(1); auto a2 = a->e(2); auto b0 = b->e(0); auto b1 = b->e(1); auto b2 = b->e(2); o->p(Nd4jLong(0L), a1 * b2 - a2 * b1); o->p(1L, a2 * b0 - a0 * b2); o->p(2L, a0 * b1 - a1 * b0); } } void FORCEINLINE _crossBatched(sd::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) { auto a_ = a->reshape(a->ordering(), {-1, 3}); auto b_ = b->reshape(b->ordering(), {-1, 3}); auto o_ = o->reshape(o->ordering(), {-1, 3}, false); auto tadsA = a_.allTensorsAlongDimension({1}); auto tadsB = b_.allTensorsAlongDimension({1}); auto tadsO = o_.allTensorsAlongDimension({1}); int tads = tadsA.size(); auto func = PRAGMA_THREADS_FOR { for (auto e = start; e < stop; e++) { auto a_ = tadsA.at(e); auto b_ = tadsB.at(e); auto o_ = tadsO.at(e); helpers::cross(context, a_, b_, o_); } }; samediff::Threads::parallel_tad(func, 0, tads); } void weightedCrossEntropyWithLogitsFunctor(sd::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output); } } }