/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author sgazeos@gmail.com // #ifndef __H_LEGACY_HELPERS__ #define __H_LEGACY_HELPERS__ #include namespace nd4j { namespace ops { namespace helpers { /* FORCEINLINE void reluDerivative(NDArray* theFirst, NDArray const* theSecond); FORCEINLINE void reluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void relu6Derivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void leakyReluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void eluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void seluDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void cubeDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void reduceNorm1(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void sxeLossWithLogits(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void tanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void hardTanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void rationalTanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void rectifiedTanhDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void softSignDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void softPlusDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void sigmoidDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); FORCEINLINE void hardSigmoidDerivative(NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); */ void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond); void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void cubeDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void reduceNorm1(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void sigmCrossEntropy(nd4j::LaunchContext * context, NDArray* logits, NDArray* lablels, NDArray* theOutput); void sigmCrossEntropyGrad(nd4j::LaunchContext * context, NDArray* logits, NDArray* lablels, NDArray* theOutput); void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void softSignDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void softPlusDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void sigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void hardSigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput); void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* axis, NDArray* output); void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output); } } } #endif