/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018 // #include #include #include #include #include #include #include #include #include namespace nd4j { namespace ops { namespace helpers { /////////////////////////////////////////////////////////////////// template __global__ static void concatCuda(const int numOfArrs, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) { __shared__ int arrIdx, blocksPerArr; __shared__ T *x, *z; __shared__ Nd4jLong *zShapeInfo, *xShapeInfo, arrLen, arrLenPerBlock, start, end; if (threadIdx.x == 0) { blocksPerArr = (gridDim.x + numOfArrs - 1) / numOfArrs; // ceil arrIdx = blockIdx.x / blocksPerArr; x = reinterpret_cast(reinterpret_cast(pVx)[arrIdx]); z = reinterpret_cast(reinterpret_cast(pVz)[arrIdx]); xShapeInfo = reinterpret_cast(pxShapeInfo)[arrIdx]; zShapeInfo = reinterpret_cast(pzShapeInfo)[arrIdx]; arrLen = shape::length(xShapeInfo); arrLenPerBlock = (arrLen + blocksPerArr - 1) / blocksPerArr; // ceil start = (blockIdx.x % blocksPerArr) * arrLenPerBlock; end = (start + arrLenPerBlock) > arrLen ? arrLen : (start + arrLenPerBlock); } __syncthreads(); for (Nd4jLong i = start + threadIdx.x; i < end; i += blockDim.x) z[shape::getIndexOffset(i, zShapeInfo, arrLen)] = x[shape::getIndexOffset(i, xShapeInfo, arrLen)]; } /////////////////////////////////////////////////////////////////// template __host__ static void concatCudaLauncher(const int numOfArrs, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) { concatCuda<<<512, 256, 1024, *stream>>>(numOfArrs, pVx, pxShapeInfo, pVz, pzShapeInfo); } /////////////////////////////////////////////////////////////////// // x - input, y - paddings, z - output template __global__ static void padCuda(const int mode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const void *vPadVal) { const X padVal = *reinterpret_cast(vPadVal); const auto x = reinterpret_cast(vx); const auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ int rank, rankMinusOne; __shared__ Nd4jLong zLen, yLen, totalThreads, *coords, *xShape, *zShape, *xStride, *zStride, shift1, shift2, yStride0; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; coords = reinterpret_cast(shmem); zLen = shape::length(zShapeInfo); xShape = shape::shapeOf(const_cast(xShapeInfo)); zShape = shape::shapeOf(const_cast(zShapeInfo)); xStride = shape::stride(const_cast(xShapeInfo)); zStride = shape::stride(const_cast(zShapeInfo)); yStride0 = shape::stride(const_cast(yShapeInfo))[0]; rank = shape::rank(xShapeInfo); zLen = shape::length(zShapeInfo); yLen = 2 * rank; rankMinusOne = rank - 1; totalThreads = gridDim.x * blockDim.x; shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC } __syncthreads(); auto xzCoord = coords + threadIdx.x * rank; // we use xzCoord storage both for x and z arrays const auto tid = blockIdx.x * blockDim.x + threadIdx.x; if(mode == 0) { // CONSTANT case for (Nd4jLong i = tid; i < zLen; i += totalThreads) { shape::index2coords(rank, zShape, i, zLen, xzCoord); const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank); bool within = true; for(int j = rankMinusOne; j >= 0; --j) { if(xShape[j] == zShape[j]) continue; const auto left = y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)]; if(xzCoord[j] < left || xzCoord[j] >= left + xShape[j]) {within = false; break;} else {xzCoord[j] = xzCoord[j] - left;} } if(within) z[zOffset] = x[shape::getOffset(0, xShape, xStride, xzCoord, rank)]; else z[zOffset] = padVal; } } else { // REFLECT and SYMMETRIC cases for (Nd4jLong i = tid; i < zLen; i += totalThreads) { shape::index2coords(rank, zShape, i, zLen, xzCoord); const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank); for(int j = rankMinusOne; j >= 0; --j) { if(xShape[j] == zShape[j]) continue; xzCoord[j] = xzCoord[j] - y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)]; // are ready to fill middle (within input dimension range) if(xzCoord[j] < 0) xzCoord[j] = -xzCoord[j] - shift1; // means fill from left else if(xzCoord[j] >= xShape[j]) xzCoord[j] = 2 * xShape[j] - xzCoord[j] - shift2; // means fill from right } const auto xOffset = shape::getOffset(0, xShape, xStride, xzCoord, rank); z[zOffset] = x[xOffset]; } } } /////////////////////////////////////////////////////////////////// template static void padCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int mode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const void* padVal) { padCuda<<>>(mode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, padVal); } /////////////////////////////////////////////////////////////////// void pad(nd4j::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) { PointersManager manager(context, "pad"); NDArray::prepareSpecialUse({&output}, {&input, &paddings, &padValue}); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = 8 * threadsPerBlock * output.rankOf() + 128; const auto xType = input.dataType(); const auto yType = paddings.dataType(); BUILD_DOUBLE_SELECTOR(xType, yType, padCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), mode, input.getSpecialBuffer(), input.getSpecialShapeInfo(), paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), padValue.getSpecialBuffer()), LIBND4J_TYPES, INTEGER_TYPES); NDArray::registerSpecialUse({&output}, {&input, &paddings, &padValue}); manager.synchronize(); } ////////////////////////////////////////////////////////////////////////// template static void triuBP_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) { } void triuBP(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) { BUILD_SINGLE_SELECTOR(gradO.dataType(), triuBP_, (context, input, gradO, gradI, diagonal), LIBND4J_TYPES); } BUILD_SINGLE_TEMPLATE(template void triuBP_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal), LIBND4J_TYPES); ////////////////////////////////////////////////////////////////////////// template static void trace_(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) { } void trace(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) { BUILD_SINGLE_SELECTOR(input.dataType(), trace_, (context, input, output), LIBND4J_TYPES); } BUILD_SINGLE_TEMPLATE(template void trace_, (nd4j::LaunchContext * context, const NDArray& input, NDArray& output), LIBND4J_TYPES); ////////////////////////////////////////////////////////////////////////// template void randomShuffle_(nd4j::LaunchContext * context, NDArray& input, NDArray& output, nd4j::random::RandomBuffer& rng, const bool isInplace) { } void randomShuffle(nd4j::LaunchContext * context, NDArray& input, NDArray& output, nd4j::random::RandomBuffer& rng, const bool isInplace) { BUILD_SINGLE_SELECTOR(input.dataType(), randomShuffle_, (context, input, output, rng, isInplace), LIBND4J_TYPES); } BUILD_SINGLE_TEMPLATE(template void randomShuffle_, (nd4j::LaunchContext * context, NDArray& input, NDArray& output, nd4j::random::RandomBuffer& rng, const bool isInplace), LIBND4J_TYPES); //////////////////////////////////////////////////////////////////////// void invertPermutation(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) { } //////////////////////////////////////////////////////////////////////// template static void gatherND_(nd4j::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) { } void gatherND(nd4j::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) { BUILD_SINGLE_SELECTOR(input.dataType(), gatherND_, (context, input, indices, output), LIBND4J_TYPES); } BUILD_SINGLE_TEMPLATE(template void gatherND_, (nd4j::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output), LIBND4J_TYPES); ////////////////////////////////////////////////////////////////////////// void eye(nd4j::LaunchContext * context, NDArray& output) { } ////////////////////////////////////////////////////////////////////////// void scatterUpdate(nd4j::LaunchContext * context, NDArray& operand, NDArray& updates, const std::vector* intArgs) { } ////////////////////////////////////////////////////////////////////////// template static __global__ void global_mergeMaxIndex_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { auto output = reinterpret_cast(voutput); const auto tid = blockIdx.x * gridDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (Nd4jLong e = tid; e < length; e += step) { T mVal = -DataTypeUtils::max(); Z mIdx(0); for (int i = 0; i < numArrays; i++) { auto x = reinterpret_cast(inArrs[i]); auto xShape = reinterpret_cast(inShapes[i]); auto val = x[shape::getIndexOffset(e, xShape, length)];; if (mVal < val) mIdx = static_cast(e); } __syncthreads(); output[shape::getIndexOffset(e, outputShape, length)] = mIdx; } } template static void mergeMaxIndex_(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { std::vector inBuffers(inArrs.size()); std::vector inShapes(inArrs.size()); for (int e = 0; e < inArrs.size(); e++) { inBuffers[e] = inArrs[e]->getSpecialBuffer(); inShapes[e] = inArrs[e]->getSpecialShapeInfo(); } PointersManager manager(context, "mergeMaxIndex"); auto pInBuffers = reinterpret_cast(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *))); auto pInShapes = reinterpret_cast(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *))); auto length = output.lengthOf(); global_mergeMaxIndex_<<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); manager.synchronize(); } void mergeMaxIndex(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INTEGER_TYPES); } BUILD_DOUBLE_TEMPLATE(template void mergeMaxIndex_, (nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output), LIBND4J_TYPES, INTEGER_TYPES); ////////////////////////////////////////////////////////////////////////// template static __global__ void global_mergeMax_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { auto output = reinterpret_cast(voutput); const auto tid = blockIdx.x * gridDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (Nd4jLong e = tid; e < length; e += step) { T mVal = -DataTypeUtils::max(); for (int i = 0; i < numArrays; i++) { auto x = reinterpret_cast(inArrs[i]); auto xShape = reinterpret_cast(inShapes[i]); auto val = x[shape::getIndexOffset(e, xShape, length)];; if (mVal < val) mVal = val; } __syncthreads(); output[shape::getIndexOffset(e, outputShape, length)] = mVal; } } template static void mergeMax_(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { std::vector inBuffers(inArrs.size()); std::vector inShapes(inArrs.size()); for (int e = 0; e < inArrs.size(); e++) { inBuffers[e] = inArrs[e]->getSpecialBuffer(); inShapes[e] = inArrs[e]->getSpecialShapeInfo(); } PointersManager manager(context, "mergeMax"); auto pInBuffers = reinterpret_cast(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *))); auto pInShapes = reinterpret_cast(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *))); auto length = output.lengthOf(); global_mergeMax_<<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); manager.synchronize(); } BUILD_SINGLE_TEMPLATE(template void mergeMax_, (nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output), LIBND4J_TYPES); void mergeMax(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES); } ////////////////////////////////////////////////////////////////////////// template static __global__ void global_mergeAvg_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { auto output = reinterpret_cast(voutput); const auto tid = blockIdx.x * gridDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (Nd4jLong e = tid; e < length; e += step) { T sum(0.0f); for (int i = 0; i < numArrays; i++) { auto x = reinterpret_cast(inArrs[i]); auto xShape = reinterpret_cast(inShapes[i]); sum += x[shape::getIndexOffset(e, xShape, length)]; } output[shape::getIndexOffset(e, outputShape, length)] = sum / numArrays; } } template static void mergeAvg_(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { std::vector inBuffers(inArrs.size()); std::vector inShapes(inArrs.size()); for (int e = 0; e < inArrs.size(); e++) { inBuffers[e] = inArrs[e]->getSpecialBuffer(); inShapes[e] = inArrs[e]->getSpecialShapeInfo(); } PointersManager manager(context, "mergeAvg"); auto pInBuffers = reinterpret_cast(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *))); auto pInShapes = reinterpret_cast(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *))); auto length = output.lengthOf(); global_mergeAvg_<<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); manager.synchronize(); } BUILD_SINGLE_TEMPLATE(template void mergeAvg_, (nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output), LIBND4J_TYPES); void mergeAvg(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), LIBND4J_TYPES); } ////////////////////////////////////////////////////////////////////////// template static __global__ void global_mergeAdd_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) { auto output = reinterpret_cast(voutput); const auto tid = blockIdx.x * gridDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (Nd4jLong e = tid; e < length; e += step) { T sum(0.0f); for (int i = 0; i < numArrays; i++) { auto x = reinterpret_cast(inArrs[i]); auto xShape = reinterpret_cast(inShapes[i]); sum += x[shape::getIndexOffset(e, xShape, length)]; } output[shape::getIndexOffset(e, outputShape, length)] = sum; } } template static void mergeAdd_(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { std::vector inBuffers(inArrs.size()); std::vector inShapes(inArrs.size()); for (int e = 0; e < inArrs.size(); e++) { inBuffers[e] = inArrs[e]->getSpecialBuffer(); inShapes[e] = inArrs[e]->getSpecialShapeInfo(); } PointersManager manager(context, "mergeAdd"); auto pInBuffers = reinterpret_cast(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void *))); auto pInShapes = reinterpret_cast(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void *))); auto length = output.lengthOf(); global_mergeAdd_<<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length); manager.synchronize(); } BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output), LIBND4J_TYPES); void mergeAdd(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output) { BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), LIBND4J_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template static __global__ void clipByNormInplaceKernel(Nd4jLong numOfSubArrs, T* inputBuffer, Nd4jLong* shape, Nd4jLong* inputOffsets, T* norm2Buf, Nd4jLong* norm2shape, T clipNorm) { for (int arr = blockIdx.x; arr < numOfSubArrs; arr += gridDim.x) { __shared__ T* z; __shared__ Nd4jLong len; if (threadIdx.x == 0) { len = shape::length(shape); z = inputBuffer + inputOffsets[arr]; } __syncthreads(); for (int j = threadIdx.x; j < len; j+= blockDim.x) { auto xIndex = shape::getIndexOffset(j, shape, len); if(norm2Buf[arr] > clipNorm) z[xIndex] *= clipNorm / norm2Buf[arr]; // case with ews = 1 and ordering is 'c' } } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template static __global__ void clipByNormKernel(Nd4jLong numOfSubArrs, T* inputBuffer, Nd4jLong* shape, Nd4jLong* inputOffsets, T* outputBuffer, Nd4jLong* outputShape, Nd4jLong* outputOffsets, T* norm2Buf, Nd4jLong* norm2shape, T clipNorm) { for (Nd4jLong arr = blockIdx.x; arr < numOfSubArrs; arr += gridDim.x) { __shared__ T* x, *z; __shared__ Nd4jLong lenX, lenZ; __shared__ T norm2; if (threadIdx.x == 0) { lenX = shape::length(shape); x = inputBuffer + inputOffsets[arr]; z = outputBuffer + outputOffsets[arr]; lenZ = shape::length(outputShape); norm2 = norm2Buf[shape::getIndexOffset(arr, norm2shape, numOfSubArrs)]; //printf("%d: %lf (vs %lf) %lld %lld\n", arr, norm2, clipNorm, lenX, lenZ); } __syncthreads(); for (Nd4jLong j = threadIdx.x; j < lenZ; j+= blockDim.x) { auto xIndex = shape::getIndexOffset(j, shape, lenX); auto zIndex = shape::getIndexOffset(j, outputShape, lenZ); if(norm2 > clipNorm) { z[zIndex] = x[xIndex] * clipNorm / norm2; // case with ews = 1 and ordering is 'c' } else { z[zIndex] = x[xIndex]; } //printf("%lld: %lf %lf\n", j, z[zIndex], x[xIndex]); } __syncthreads(); } } ////////////////////////////////////////////////////////////////////////// template static void clipByNorm_(nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector& dimensions, NDArray const& clipNormA, const bool isInplace) { const int rank = input.rankOf(); auto norm2 = input.reduceAlongDims(reduce::Norm2, dimensions); clipNormA.syncToHost(); //norm2.printBuffer("Norm2"); T const clipNorm = clipNormA.e(0); //clipNormA.printBuffer("ClipNorm"); auto stream = context->getCudaStream(); if (isInplace) { if(norm2.lengthOf() == 1) { norm2.syncToHost(); T norm2Val = norm2.e(0); if(norm2Val > clipNorm) input *= clipNorm / norm2Val; } else { std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions); const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude); auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), dimensions); //auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), dimsToExclude); T* inputBuffer = reinterpret_cast(input.specialBuffer()); T* norm2buf = reinterpret_cast(norm2.specialBuffer()); clipByNormInplaceKernel<<<256, 512, 1024, *stream>>>(numOfSubArrs, inputBuffer, packX.specialShapeInfo(), packX.specialOffsets(), norm2buf, norm2.specialShapeInfo(), clipNorm); } } else { if(norm2.lengthOf() == 1) { norm2.syncToHost(); T norm2Val = norm2.e(0); if(norm2Val > clipNorm) output.assign( input * (clipNorm / norm2Val)); else output.assign( input ); } else { std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions); const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude); auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), dimensions); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), dimensions); T* inputBuffer = reinterpret_cast(input.specialBuffer()); T* norm2buf = reinterpret_cast(norm2.specialBuffer()); T* outputBuffer = reinterpret_cast(output.specialBuffer()); clipByNormKernel<<<256, 512, 1024, *stream>>>(numOfSubArrs, inputBuffer, packX.specialShapeInfo(), packX.specialOffsets(), outputBuffer, packZ.specialShapeInfo(), packZ.specialOffsets(), norm2buf, norm2.specialShapeInfo(), clipNorm); } } } void clipByNorm(nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector& dimensions, const NDArray& clipNorm, const bool isInplace) { BUILD_SINGLE_SELECTOR(output.dataType(), clipByNorm_, (context, input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void clipByNorm_, (nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES); template static void clipByGlobalNorm_(nd4j::LaunchContext * context, std::vector const& inputs, double clipNorm, nd4j::memory::Workspace* workspace, std::vector& outputs, bool isInplace) { } void clipByGlobalNorm(nd4j::LaunchContext * context, std::vector const& inputs, double clipNorm, nd4j::memory::Workspace* workspace, std::vector& outputs, bool isInplace) { BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (context, inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (nd4j::LaunchContext * context, std::vector const& inputs, double clipNorm, nd4j::memory::Workspace* workspace, std::vector& outputs, bool isInplace), FLOAT_TYPES); ////////////////////////////////////////////////////////////////////////// template static void clipByNormBP_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector& dimensions, const NDArray& clipNorm) { } void clipByNormBP(nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector& dimensions, const NDArray& clipNorm) { BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBP_, (context, input, gradO, gradI, dimensions, clipNorm), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void clipByNormBP_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector& dimensions, const NDArray& clipNorm), FLOAT_TYPES); ////////////////////////////////////////////////////////////////////////// template static void clipByAveraged_(nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector& dimensions, const NDArray& clipNorm, const bool isInplace) { auto cn = clipNorm.e(0); if (dimensions.size() == 0) { // all-reduce T n2 = input.reduceNumber(reduce::Norm2).e(0) / input.lengthOf(); if (n2 <= cn) { if (!isInplace) output.assign(input); } else { const T factor = cn / n2; //auto lambda = LAMBDA_T(_x, factor) { return _x * factor; }; //input.applyLambda(lambda, &output); output.assign(input * factor); } } else { // along dimension auto norm2 = input.reduceAlongDims(reduce::Norm2, dimensions, false); if (!isInplace) output.assign(input); auto tads = output.allTensorsAlongDimension(dimensions); auto outTads = output.allTensorsAlongDimension(dimensions); // TODO: make this CUDA-compliant somehow for (int e = 0; e < tads->size(); e++) { T n2 = norm2.e(e) / tads->at(e)->lengthOf(); const T factor = cn / n2; if (n2 > cn) { //auto lambda = LAMBDA_T(_x, factor) {return _x * factor;}; tads->at(e)->applyScalar(scalar::Multiply, factor, outTads->at(e));//applyLambda(lambda, &output); } } delete tads; delete outTads; } } void clipByAveraged(nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector& dimensions, const NDArray& clipNorm, const bool isInplace) { BUILD_SINGLE_SELECTOR(input.dataType(), clipByAveraged_, (context, input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void clipByAveraged_, (nd4j::LaunchContext * context, NDArray& input, NDArray& output, const std::vector& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES); /* if (d1 > params[1]) return params[1]; else if (d1 < params[0]) return params[0]; else return d1; */ template static void __global__ clipByValueKernel(void* input, Nd4jLong* inputShape, void* output, Nd4jLong* outputShape, double leftBound, double rightBound) { __shared__ T* outputBuf; __shared__ T* inputBuf; __shared__ Nd4jLong length; __shared__ bool linearBuffers; if (threadIdx.x == 0) { outputBuf = reinterpret_cast(output); inputBuf = reinterpret_cast(input); length = shape::length(inputShape); linearBuffers = shape::elementWiseStride(inputShape) == shape::elementWiseStride(outputShape) && shape::elementWiseStride(inputShape) == 1; } __syncthreads(); const auto tid = blockIdx.x * gridDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (Nd4jLong e = tid; e < length; e += step) { if (linearBuffers) { if (inputBuf[e] > rightBound) outputBuf[e] = (T) rightBound; else if (inputBuf[e] < leftBound) outputBuf[e] = (T) leftBound; else outputBuf[e] = inputBuf[e]; } else { auto inputOffset = shape::getIndexOffset(e, inputShape, length); auto outputOffset = shape::getIndexOffset(e, outputShape, length); if (inputBuf[inputOffset] > rightBound) outputBuf[outputOffset] = (T) rightBound; else if (inputBuf[inputOffset] < leftBound) outputBuf[outputOffset] = (T) leftBound; else outputBuf[outputOffset] = inputBuf[outputOffset]; } } } template static void clipByValue_(nd4j::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) { auto stream = context->getCudaStream(); if (!input.isActualOnDeviceSide()) input.syncToDevice(); NDArray::prepareSpecialUse({&output}, {&input}); clipByValueKernel<<<256, 512, 8192, *stream>>>(input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftBound, rightBound); NDArray::registerSpecialUse({&output}, {&input}); } void clipByValue(nd4j::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) { BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (context, input, leftBound, rightBound, output), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void clipByValue_, (nd4j::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template static __global__ void mirrorPadLinearKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong leftSide, Nd4jLong leftSideCorrected, Nd4jLong xLen, Nd4jLong len, Nd4jLong zLen) { __shared__ T const* x; __shared__ T* z; if (threadIdx.x == 0) { x = reinterpret_cast(vx); z = reinterpret_cast(vz); } __syncthreads(); auto start = blockIdx.x * blockDim.x + threadIdx.x; auto step = blockDim.x * gridDim.x; for(int i = start; i < zLen; i+= step) { auto zIndex = shape::getIndexOffset(i, zShape, zLen); auto xIndex = shape::getIndexOffset(len - i, xShape, xLen); if (i < leftSide) // left side xIndex = shape::getIndexOffset(leftSideCorrected - i, xShape, xLen); else if(i >= leftSide && i < leftSide + xLen) // middle xIndex = shape::getIndexOffset(i - leftSide, xShape, xLen); // else // right side // z[i] = x[len - i]; z[zIndex] = x[xIndex]; } } template static __global__ void mirrorPadKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong outLen, void const* paddings, Nd4jLong* paddingShape, int reflBorder) { __shared__ F const* x; __shared__ I const* pads; __shared__ F* z; __shared__ Nd4jLong zRank, rank; __shared__ Nd4jLong* xShapeOf, *xStrideOf, *padsShapeOf, *padsStrideOf; __shared__ Nd4jLong* zShapeOf, *zStrideOf; __shared__ Nd4jLong* xIdx; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; xIdx = reinterpret_cast(shmem); rank = shape::rank(xShape); x = reinterpret_cast(vx);// pads = reinterpret_cast(paddings); z = reinterpret_cast(vz); xShapeOf = shape::shapeOf(xShape); xStrideOf = shape::stride(xShape); zShapeOf = shape::shapeOf(zShape); zRank = shape::rank(zShape); zStrideOf = shape::stride(zShape); padsShapeOf = shape::shapeOf(paddingShape); padsStrideOf = shape::stride(paddingShape); } __syncthreads(); auto start = threadIdx.x + blockIdx.x * blockDim.x; auto step = blockDim.x * gridDim.x; for(Nd4jLong i = start; i < outLen; i+= step) { auto xzCoord = xIdx + threadIdx.x * rank; //auto zxCoord = xIdx + (threadIdx.x + threadIdx.x % 2 + 1) * rank; shape::index2coords(rank, zShapeOf, i, xzCoord); auto outOffset = shape::getOffset(0, zShapeOf, zStrideOf, xzCoord, rank); // auto intStep = blockDim.y * gridDim.y; for(int j = 0; j < rank; j++) { const Nd4jLong inLen = shape::sizeAt(xShape, j); Nd4jLong coords[2] = {j, 0}; auto padOffset = shape::getOffset(0, padsShapeOf, padsStrideOf, coords, 2); // padding already has rank 2 const auto leftSide = pads[padOffset]; const auto leftSideCorrected = leftSide - reflBorder; const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder; if(xzCoord[j] < leftSide) // left side xzCoord[j] = leftSideCorrected - xzCoord[j]; else if(xzCoord[j] >= leftSide && xzCoord[j] < leftSide + inLen) // middle xzCoord[j] = xzCoord[j] - leftSide; else if (len > xzCoord[j]) // right side xzCoord[j] = len - xzCoord[j]; else xzCoord[j] = xzCoord[j] - len; } auto inOffset = shape::getOffset(0, xShapeOf, xStrideOf, xzCoord, rank); z[outOffset] = x[inOffset]; } } template static void mirrorPad_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) { // mode: 0 - REFLECT, else - SYMMETRIC const int reflBorder = (bool)mode ? 1 : 0; const int rank = input.rankOf(); const Nd4jLong outLen = output.lengthOf(); auto stream = context->getCudaStream(); NDArray::prepareSpecialUse({&output}, {&input, &paddings}); if(rank <= 1) { const Nd4jLong inLen = input.lengthOf(); const auto leftSide = paddings.e(0); const auto leftSideCorrected = leftSide - reflBorder; const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder; mirrorPadLinearKernel<<<256, 512, 256, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftSide, leftSideCorrected, inLen, len, outLen); nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadLinearKernel(...) failed"); } else { mirrorPadKernel<<<256, 256, 8192, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), outLen, paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), reflBorder); nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadKernel(...) failed"); } NDArray::registerSpecialUse({&output}, {&input, &paddings}); } void mirrorPad(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) { BUILD_DOUBLE_SELECTOR(input.dataType(), paddings.dataType(), mirrorPad_, (context, input, paddings, output, mode), LIBND4J_TYPES, INTEGER_TYPES); } BUILD_DOUBLE_TEMPLATE(template void mirrorPad_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES, INTEGER_TYPES); ////////////////////////////////////////////////////////////////////////// void concat(nd4j::LaunchContext * context, const std::vector& inArrs, NDArray& output, const int axis) { const int numOfArrs = inArrs.size(); for(int i = 0; i < numOfArrs; ++i) if(!inArrs[i]->isActualOnDeviceSide()) inArrs[i]->syncToDevice(); const int rank = inArrs[0]->rankOf(); const int rank2 = 2*rank; std::vector> indices(numOfArrs, std::vector(rank2,0)); // take into account indices for first array indices[0][2 * axis + 1] = inArrs[0]->sizeAt(axis); // loop through the rest of input arrays for(int i = 1; i < numOfArrs; ++i) { indices[i][2 * axis] = indices[i-1][2 * axis + 1]; // index start from indices[i][2 * axis + 1] = indices[i-1][2 * axis + 1] + inArrs[i]->sizeAt(axis); // index end with (excluding) } std::vector outSubArrs(numOfArrs); for(int i = 0; i < numOfArrs; ++i) outSubArrs[i] = new NDArray(output(indices[i], true)); // prepare arrays of pointers on buffers and shapes std::vector hOutBuffers(numOfArrs), hInBuffers(numOfArrs); std::vector hOutShapeInfo(numOfArrs), hInShapeInfo(numOfArrs); for(int i = 0; i < numOfArrs; ++i) { hOutBuffers[i] = outSubArrs[i]->getSpecialBuffer(); hInBuffers[i] = inArrs[i]->getSpecialBuffer(); hOutShapeInfo[i] = outSubArrs[i]->getSpecialShapeInfo(); hInShapeInfo[i] = inArrs[i]->getSpecialShapeInfo(); } // allocate and copy all buffers and shapes arrays to global memory PointersManager manager(context, "helpers::concat"); void* dOutBuffers = manager.replicatePointer(hOutBuffers.data(), hOutBuffers.size() * sizeof(void*)); void* dInBuffers = manager.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void*)); void* dInShapeInfo = manager.replicatePointer(hInShapeInfo.data(), hInShapeInfo.size() * sizeof(Nd4jLong*)); void* dOutShapeInfo = manager.replicatePointer(hOutShapeInfo.data(), hOutShapeInfo.size() * sizeof(Nd4jLong*)); BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), concatCudaLauncher, (numOfArrs, context->getCudaStream(), dInBuffers, dInShapeInfo, dOutBuffers, dOutShapeInfo), LIBND4J_TYPES); manager.synchronize(); for(int i = 0; i < numOfArrs; ++i) delete outSubArrs[i]; for(int i = 0; i < numOfArrs; ++i) inArrs[i]->tickReadHost(); output.tickWriteDevice(); } ////////////////////////////////////////////////////////////////////////// template static void tileBP_(nd4j::LaunchContext * context, const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector reps) { } void tileBP(nd4j::LaunchContext * context, const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector reps) { BUILD_SINGLE_SELECTOR(gradI.dataType(), tileBP_, (context, gradO, gradI, reps), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void tileBP_, (nd4j::LaunchContext * context, const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector reps), FLOAT_TYPES); void scatterSimple(const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector& dimensions) { } BUILD_SINGLE_TEMPLATE(template void concatCudaLauncher, (const int numOfArrs, const cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo), LIBND4J_TYPES); BUILD_DOUBLE_TEMPLATE(template void padCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int mode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const void* vPadVal), LIBND4J_TYPES, INTEGER_TYPES); } } }