/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include namespace nd4j { namespace ops { namespace helpers { #ifdef HAVE_MKLDNN using namespace mkldnn; static void getMKLDNNMemoryDescLrn(const NDArray* src, const NDArray* diff_src, const NDArray* dst, mkldnn::memory::desc* lrn_src_md, mkldnn::memory::desc* lrn_diff_src_md, mkldnn::memory::desc* lrn_dst_md, mkldnn::memory::desc* user_src_md, mkldnn::memory::desc* user_diff_src_md, mkldnn::memory::desc* user_dst_md, int axis) { const Nd4jLong* shape = src->getShapeInfo(); long rank = shape[0]; long dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one long dim2 = axis >= 2 ? 1 : 2; long dim3 = axis >= 3 ? 2 : 3; mkldnn::memory::dims lrn_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1}; auto type = mkldnn::memory::data_type::f32; auto format = axis == 1 ? mkldnn::memory::format::nchw : mkldnn::memory::format::nhwc; auto supposed_to_be_any_format = format; // doesn't work with "any" if (src != nullptr && src->getBuffer() != nullptr && lrn_src_md != nullptr) { *lrn_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format); *user_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format); user_src_md->data.format = mkldnn_blocked; user_src_md->data.layout_desc.blocking.strides[0][0] = src->stridesOf()[0]; user_src_md->data.layout_desc.blocking.strides[0][1] = src->stridesOf()[dim1]; user_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? src->stridesOf()[dim2] : 1; user_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? src->stridesOf()[dim3] : 1; } if (diff_src != nullptr && diff_src->getBuffer() != nullptr && lrn_diff_src_md != nullptr) { *lrn_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format); *user_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format); user_diff_src_md->data.format = mkldnn_blocked; user_diff_src_md->data.layout_desc.blocking.strides[0][0] = diff_src->stridesOf()[0]; user_diff_src_md->data.layout_desc.blocking.strides[0][1] = diff_src->stridesOf()[dim1]; user_diff_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1; user_diff_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1; } if (dst != nullptr && dst->getBuffer() != nullptr && lrn_dst_md != nullptr) { *lrn_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format); *user_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, format); user_dst_md->data.format = mkldnn_blocked; user_dst_md->data.layout_desc.blocking.strides[0][0] = dst->stridesOf()[0]; user_dst_md->data.layout_desc.blocking.strides[0][1] = dst->stridesOf()[dim1]; user_dst_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? dst->stridesOf()[dim2] : 1; user_dst_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? dst->stridesOf()[dim3] : 1; } } #endif template static int lrnFunctor_(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) { #ifdef HAVE_MKLDNN if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output})) { std::vector& streams = block.getMKLDNNStreams(); if (streams.empty()) { streams.push_back(MKLDNNStream("lrn")); } if (streams[0].checkAndReset({input}, {output}, {(float)bias, (float)alpha, (float)beta}, {depth})) { mkldnn_memory_desc_t empty; mkldnn::memory::desc lrn_src_md(empty), lrn_dst_md(empty), user_src_md(empty), user_dst_md(empty); getMKLDNNMemoryDescLrn(input, nullptr, output, &lrn_src_md, nullptr, &lrn_dst_md, &user_src_md, nullptr, &user_dst_md, input->rankOf() - 1); auto lrn_desc = lrn_forward::desc(prop_kind::forward_inference, lrn_across_channels, lrn_src_md, (2 * depth + 1), alpha * (2 * depth + 1), beta, bias); auto engine = streams[0].getEngine(); auto lrn_prim_desc = lrn_forward::primitive_desc(lrn_desc, engine); auto user_src_memory = mkldnn::memory({user_src_md, engine}, input->buffer()); auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer()); auto lrn_src_memory = user_src_memory; streams[0].addMemory(user_src_memory); if (mkldnn::memory::primitive_desc(lrn_prim_desc.src_primitive_desc()) != user_src_memory.get_primitive_desc()) { lrn_src_memory = mkldnn::memory(lrn_prim_desc.src_primitive_desc()); streams[0].addMemory(lrn_src_memory); streams[0].addOperation(reorder(user_src_memory, lrn_src_memory)); } auto lrn_dst_memory = user_dst_memory; streams[0].addMemory(user_dst_memory); if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc()) != user_dst_memory.get_primitive_desc()) { lrn_dst_memory = mkldnn::memory(lrn_prim_desc.dst_primitive_desc()); streams[0].addMemory(lrn_dst_memory); } streams[0].addOperation(lrn_forward(lrn_prim_desc, lrn_src_memory, lrn_dst_memory)); if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc()) != user_dst_memory.get_primitive_desc()) { streams[0].addOperation(reorder(lrn_dst_memory, user_dst_memory)); } } streams[0].submitAndWait(); return ND4J_STATUS_OK; } #endif nd4j_debug("MKL-DNN is not used for lrn!\n", 0); const int rank = input->rankOf(); TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1}); TadPack outTadPack; if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo())) outTadPack = inTadPack; else outTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1}); const Nd4jLong numOfTads = inTadPack.numberOfTads(); const Nd4jLong tadLen = input->sizeAt(-1); const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets(); const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets(); const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo()); const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo()); const T* inBuff = reinterpret_cast(input->getBuffer()); T* outBuff = reinterpret_cast(output->getBuffer()); const T tbias = static_cast(bias); const T tbeta = static_cast(beta); const T talpha = static_cast(alpha); if(inTadEws == 1 && outTadEws == 1) { PRAGMA_OMP_PARALLEL_FOR_SIMD for (uint i = 0; i < numOfTads; ++i) { const T* x = inBuff + inTadOffsets[i]; T* y = outBuff + outTadOffsets[i]; T prev = 0; // calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (uint j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { for (uint s = begin; s < end; ++s) prev = prev + x[s] * x[s]; y[j] = prev; } else if (begin == 0 && last <= tadLen) y[j] = prev + x[end - 1] * x[end - 1]; else if (begin > 0 && last <= tadLen) y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1]; else if (begin > 0 && last > tadLen) y[j] = prev - x[begin - 1] * x[begin - 1]; else y[j] = prev; if(j != 0) prev = y[j]; y[j] = x[j] / nd4j::math::nd4j_pow(tbias + alpha * prev, tbeta); } } } else { PRAGMA_OMP_PARALLEL_FOR_SIMD for (uint i = 0; i < numOfTads; ++i) { const T* x = inBuff + inTadOffsets[i]; T* y = outBuff + outTadOffsets[i]; T prev = 0; // calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (uint j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { for (uint s = begin; s < end; ++s) prev = prev + x[s*inTadEws] * x[s*inTadEws]; y[j*outTadEws] = prev; } else if (begin == 0 && last <= tadLen) y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws]; else if (begin > 0 && last <= tadLen) y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws]; else if (begin > 0 && last > tadLen) y[j*outTadEws] = prev - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws]; else y[j*outTadEws] = prev; if(j != 0) prev = y[j*outTadEws]; y[j*outTadEws] = x[j*inTadEws] / nd4j::math::nd4j_pow(tbias + alpha * prev, tbeta); } } } return Status::OK(); } BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES); int lrnFunctor(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) { BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES); } ////////////////////////////////////////////////////////////////////////// template static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) { const int rank = input.rankOf(); TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1}); TadPack gradITadPack; if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo())) gradITadPack = inTadPack; else gradITadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1}); const Nd4jLong numOfTads = inTadPack.numberOfTads(); const Nd4jLong tadLen = input.sizeAt(-1); const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets(); const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets(); const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo()); const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo()); const X* inBuff = reinterpret_cast(input.getBuffer()); Y* gradIBuff = reinterpret_cast(gradI.getBuffer()); const Y tbias = static_cast(bias); const Y tbeta = static_cast(beta); const Y talpha = static_cast(alpha); const Y coeff = talpha * tbeta; if(inTadEws == 1 && gradITadEws == 1) { PRAGMA_OMP_PARALLEL_FOR_SIMD for (uint i = 0; i < numOfTads; ++i) { const X* x = inBuff + inTadOffsets[i]; Y* y = gradIBuff + gradITadOffsets[i]; // this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (uint j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { y[0] = 0; for (uint s = begin; s < end; ++s) y[0] = y[0] + x[s] * x[s]; } else if (begin == 0 && last <= tadLen) y[j] = y[j - 1] + x[end - 1] * x[end - 1]; else if (begin > 0 && last <= tadLen) y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1]; else if (begin > 0 && last > tadLen) y[j] = y[j - 1] - x[begin - 1] * x[begin - 1]; else y[j] = y[j - 1]; } Y* factor = new Y[tadLen]; Y prev = 0; // second loop calculates derivatives using information gained in first loop above for (uint j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); Y init = tbias + talpha * y[j]; if (j == 0) { for (uint s = begin; s < end; ++s) { factor[s] = nd4j::math::nd4j_pow(tbias + talpha * y[s], -tbeta - 1); prev = prev + x[s] * factor[s]; } y[0] = prev; } else if(begin == 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[end - 1], -tbeta - 1); y[j] = prev + x[end - 1] * factor[end - 1]; } else if (begin > 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[end - 1], -tbeta - 1); y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1]; } else if (begin > 0 && last > tadLen) y[j] = prev - x[begin - 1] * factor[begin - 1]; else y[j] = prev; if(j != 0) prev = y[j]; y[j] = factor[j] * init - 2 * x[j] * coeff * prev; } delete []factor; } } else { PRAGMA_OMP_PARALLEL_FOR_SIMD for (uint i = 0; i < numOfTads; ++i) { const X* x = inBuff + inTadOffsets[i]; Y* y = gradIBuff + gradITadOffsets[i]; // this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (uint j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { y[0] = 0; for (uint s = begin; s < end; ++s) y[0] = y[0] + x[s*inTadEws] * x[s*inTadEws]; } else if (begin == 0 && last <= tadLen) y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws]; else if (begin > 0 && last <= tadLen) y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws]; else if (begin > 0 && last > tadLen) y[j*gradITadEws] = y[(j - 1)*gradITadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws]; else y[j*gradITadEws] = y[(j - 1)*gradITadEws]; } Y* factor = new Y[tadLen]; Y prev = 0; // second loop calculates derivatives using information gained in first loop above for (uint j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); Y init = tbias + talpha * y[j*gradITadEws]; if (j == 0) { for (uint s = begin; s < end; ++s) { factor[s] = nd4j::math::nd4j_pow(tbias + talpha * y[s*gradITadEws], -tbeta - 1); prev = prev + x[s*inTadEws] * factor[s]; } y[0] = prev; } else if(begin == 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1); y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1]; } else if (begin > 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1); y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1] - x[(begin - 1)*inTadEws] * factor[begin - 1]; } else if (begin > 0 && last > tadLen) y[j*gradITadEws] = prev - x[(begin - 1)*inTadEws] * factor[begin - 1]; else y[j*gradITadEws] = prev; if(j != 0) prev = y[j*gradITadEws]; y[j*gradITadEws] = factor[j] * init - 2 * x[j*inTadEws] * coeff * prev; } delete []factor; } } gradI *= gradO; } BUILD_DOUBLE_TEMPLATE(template void lrnBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta), LIBND4J_TYPES, FLOAT_TYPES); void lrnBP(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) { BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES); } } } }