/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 01.06.2018 // #include #include namespace nd4j { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(reduce_mean, 1, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); auto dimensions = *block.getIArguments(); if (block.width() > 1) { auto axesVector = INPUT_VARIABLE(1); helpers::adjustAxis(input->rankOf(), axesVector, dimensions); } bool keepDims = false; if (block.getBArguments()->size()) keepDims = B_ARG(0); else if (block.getTArguments()->size()) keepDims = (bool)T_ARG(0); REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MEAN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_MEAN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item); input->reduceAlongDimension(reduce::Mean, output, dimensions, keepDims); return Status::OK(); } DECLARE_SHAPE_FN(reduce_mean) { auto dimensions = *block.getIArguments(); auto in = inputShape->at(0); if (block.width() > 1) { auto axesVector = INPUT_VARIABLE(1); helpers::adjustAxis(shape::rank(in), axesVector, dimensions); } bool keepDims = false; if (block.getBArguments()->size()) keepDims = B_ARG(0); else if (block.getTArguments()->size()) keepDims = (bool)T_ARG(0); REQUIRE_TRUE(dimensions.size() <= in[0], 0, "REDUCE_MEAN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_MEAN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item); auto outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(in), dimensions, in, keepDims, false, block.getWorkspace()); return SHAPELIST(outShapeInfo); } DECLARE_TYPES(reduce_mean) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(reduce_mean_bp, 2, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto gradO = INPUT_VARIABLE(1); auto gradI = OUTPUT_VARIABLE(0); auto dimensions = *block.getIArguments(); if (block.width() > 2) { auto axesVector = INPUT_VARIABLE(2); helpers::adjustAxis(input->rankOf(), axesVector, dimensions); } bool keepDims = false; if (block.getBArguments()->size()) keepDims = B_ARG(0); else if (block.getTArguments()->size()) keepDims = (bool)T_ARG(0); REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MEAN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_MEAN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item); if(gradO->lengthOf() == 1) { gradI->assign(gradO->e(0) / input->lengthOf()); } else { (*gradI).assign((gradO->lengthOf() + 0.) / input->lengthOf()); if(!keepDims) { auto gradOShapeKeepDims = ShapeUtils::evalReduceShapeInfo(gradO->ordering(), dimensions, *input, true, false, block.getWorkspace()); gradO = gradO->reshape(gradO->ordering(), ShapeUtils::pullShapeFromShapeInfo(gradOShapeKeepDims)); // for example could be something like [a,b] -> [1,a,1,b] } *gradI *= *gradO; if(!keepDims) delete gradO; } return Status::OK(); } DECLARE_SHAPE_FN(reduce_mean_bp) { auto in = inputShape->at(0); auto dimensions = *block.getIArguments(); auto rank = shape::rank(in); if (block.width() > 2) { auto axesVector = INPUT_VARIABLE(2); helpers::adjustAxis(rank, axesVector, dimensions); } REQUIRE_TRUE(dimensions.size() <= rank, 0, "REDUCE_MEAN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -rank || item < rank, 0, "REDUCE_MEAN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , rank, rank, item); Nd4jLong* gradIshapeInfo(nullptr); COPY_SHAPE(inputShape->at(0), gradIshapeInfo); return SHAPELIST(CONSTANT(gradIshapeInfo)); } DECLARE_TYPES(reduce_mean_bp) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } }