/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #if NOT_EXCLUDED(OP_dilation2d) #include #include namespace nd4j { namespace ops { CUSTOM_OP_IMPL(dilation2d, 2, 1, false, 0, 1) { auto input = INPUT_VARIABLE(0); auto weights = INPUT_VARIABLE(1); auto output = OUTPUT_VARIABLE(0); REQUIRE_TRUE(input->rankOf() == 4, 0, "Dilation2D: input should be 4D"); REQUIRE_TRUE(weights->rankOf() == 3, 0, "Dilation2D: weights should be 3D"); const int batch_size = input->sizeAt(0); const int depth = input->sizeAt(3); const bool isSameShape = INT_ARG(0) == 1; REQUIRE_TRUE(input->sizeAt(3) == weights->sizeAt(2), 0, "Dilation2D: number of input channels doesn't match number of channels in weights: %i vs %i", input->sizeAt(3), weights->sizeAt(2)); std::vector strides(4); std::vector rates(4); if (block.width() > 2) { REQUIRE_TRUE(block.width() >= 4, 0, "Dilation2D: number of input arrays should be 4 at least"); auto r = INPUT_VARIABLE(2); auto s = INPUT_VARIABLE(3); strides = s->template asVectorT(); rates = r->template asVectorT(); } else { REQUIRE_TRUE(block.numI() >= 9, 0, "Dilation2D: number of Int arguments should be 9 at least"); int e = 1; for (int cnt = 0;cnt < 4; cnt++) rates[cnt] = INT_ARG(e++); for (int cnt = 0; cnt < 4; cnt++) strides[cnt] = INT_ARG(e++); } int stride_rows = 0, stride_cols = 0; int rate_rows = 0, rate_cols = 0; int pad_top = 0, pad_left = 0; int out_rows = 0, out_cols = 0; helpers::_dilation_hw(block.launchContext(), input->shapeInfo(), weights->shapeInfo(), strides, rates, isSameShape, &stride_rows, &stride_cols, &rate_rows, &rate_cols, &pad_top, &pad_left, &out_rows, &out_cols); REQUIRE_TRUE(out_rows > 0 && out_cols > 0, 0, "Dilation2D: outY and outX should have positive values, but got [%i, %i] instead", out_rows, out_cols); helpers::dilation2d(block.launchContext(), input, weights, output, stride_rows, stride_cols, rate_rows, rate_cols, pad_top, pad_left); return Status::OK(); } DECLARE_TYPES(dilation2d) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(dilation2d) { auto input = inputShape->at(0); auto weights = inputShape->at(1); const int batch_size = shape::sizeAt(input, 0); const int depth = shape::sizeAt(input, 3); const bool isSameShape = INT_ARG(0) == 1; std::vector strides(4); std::vector rates(4); Nd4jLong *newShape; if (block.width() > 2) { auto r = INPUT_VARIABLE(2); auto s = INPUT_VARIABLE(3); strides = s->template asVectorT(); rates = r->template asVectorT(); } else { if (block.numI() < 9) { newShape = ConstantShapeHelper::getInstance()->scalarShapeInfo(block.dataType()); return SHAPELIST(newShape); } int e = 1; for (int cnt = 0;cnt < 4; cnt++) rates[cnt] = INT_ARG(e++); for (int cnt = 0; cnt < 4; cnt++) strides[cnt] = INT_ARG(e++); } int stride_rows = 0, stride_cols = 0; int rate_rows = 0, rate_cols = 0; int pad_top = 0, pad_left = 0; int out_rows = 0, out_cols = 0; helpers::_dilation_hw(block.launchContext(), input, weights, strides, rates, isSameShape, &stride_rows, &stride_cols, &rate_rows, &rate_cols, &pad_top, &pad_left, &out_rows, &out_cols); std::array shape = {{batch_size, out_rows, out_cols, depth}}; newShape = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(weights), 'c', 4, shape.data()); return SHAPELIST(newShape); } } } #endif