/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by raver119 on 20/04/18. // #include #include #include #include #include namespace nd4j { DebugInfo DebugHelper::debugStatistics(NDArray const* input) { DebugInfo info; DebugHelper::retrieveDebugStatistics(&info, input); return info; } void DebugHelper::retrieveDebugStatistics(DebugInfo* info, NDArray const* input) { if (nullptr == info) return; info->_minValue = 0.; info->_maxValue = -1; info->_meanValue = 0.; info->_stdDevValue = 1.; info->_zeroCount = 0; info->_positiveCount = 0; info->_negativeCount = 0; info->_infCount = 0; info->_nanCount = 0; if (input->lengthOf() == 1) { // scalar case info->_minValue = input->e(0); info->_maxValue = info->_minValue; info->_meanValue = info->_minValue; info->_stdDevValue = info->_minValue; info->_zeroCount = nd4j::math::nd4j_abs(input->e(0)) > 0.00001? 0: 1; info->_positiveCount = input->e(0) > 0?1:0; info->_negativeCount = input->e(0) < 0?1:0; info->_infCount = nd4j::math::nd4j_isinf(input->e(0)); info->_nanCount = nd4j::math::nd4j_isnan(input->e(0)); } else if (input->lengthOf() > 0) { // TO DO: here processing for all elements with array auto _minValue = input->e(0); auto _maxValue = input->e(0); auto _meanValue = input->e(0); auto _stdDevValue = 0.; //info->_minValue; auto _zeroCount = nd4j::math::nd4j_abs(input->e(0)) > 0.00001? 0L : 1L; auto _positiveCount = input->e(0) > 0? 1L : 0L; auto _negativeCount = input->e(0) < 0? 1L : 0L; auto _infCount = nd4j::math::nd4j_isinf(input->e(0)) ? 1L : 0L; auto _nanCount = nd4j::math::nd4j_isnan(input->e(0)) ? 1L : 0L; #pragma omp parallel for schedule(guided) reduction(+:_nanCount,_infCount,_meanValue,_zeroCount,_positiveCount,_negativeCount) reduction(min:_minValue) reduction(max:_maxValue) for (Nd4jLong e = 1; e < input->lengthOf(); e++) { auto current = input->e(e); auto n = e + 1.; // auto delta = current - _meanValue; // auto delta2 = delta * delta; _minValue = nd4j::math::nd4j_min(current, _minValue); _maxValue = nd4j::math::nd4j_max(current, _maxValue); _meanValue += current; //_meanValue += delta / n; // this is a perfect formula but not working with omp in this notation //_stdDevValue += delta2 * e / n; _zeroCount += nd4j::math::nd4j_abs(current) > 0.00001 ? 0 : 1; _positiveCount += current > 0 ? 1 : 0; _negativeCount += current < 0 ? 1 : 0; _infCount += nd4j::math::nd4j_isinf(current); _nanCount += nd4j::math::nd4j_isnan(current); } *info = {_minValue, _maxValue, _meanValue / input->lengthOf(), _stdDevValue, _zeroCount, _positiveCount, _negativeCount, _infCount, _nanCount}; _stdDevValue = 0; //math::nd4j_sqrt(info->_stdDevValue / (input->lengthOf() - 1)); #pragma omp parallel for schedule (static) reduction(+:_stdDevValue) for (Nd4jLong e = 0; e < input->lengthOf(); e++) { double current = input->e(e); _stdDevValue += (info->_meanValue - current) * (info->_meanValue - current); //info->_minValue; } info->_stdDevValue = math::nd4j_sqrt(_stdDevValue / input->lengthOf()); } // else - no statistics for empty } }