/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////// template __global__ static void addBiasCuda( const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool isNCHW) { // bias [oC] // if(input_rank == 4) // input and output have same shapes: [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW) // if(input_rank == 5) // input and output have same shapes: [bS, oD, oH, oW, oC] (NHWC) or [bS, oD, oC, oH, oW] (NCHW) const X* x = reinterpret_cast(vx); const Y* y = reinterpret_cast(vy); X* z = reinterpret_cast(vz); __shared__ int rank, channelPosition, posOfNonUnityDim; __shared__ Nd4jLong len, *sharedMem; __shared__ bool xzSameOffsets, xzAreSame; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); rank = shape::rank(xShapeInfo); // xRank == zRank xzSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo); len = shape::length(xShapeInfo); channelPosition = isNCHW ? 1 : rank - 1; // second or last xzAreSame = x == z; shape::isCommonVector(yShapeInfo, posOfNonUnityDim); } __syncthreads(); auto coords = sharedMem + threadIdx.x * rank; for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < len; i += blockDim.x * gridDim.x) { shape::index2coords(i, xShapeInfo, coords); const auto xOffsets = shape::getOffset(xShapeInfo, coords); const auto zOffsets = xzSameOffsets ? xOffsets : shape::getOffset(zShapeInfo, coords); const auto yOffsets = coords[channelPosition] * shape::stride(yShapeInfo)[posOfNonUnityDim]; if(xzAreSame) z[zOffsets] += static_cast(y[yOffsets]); else z[zOffsets] = x[xOffsets] + static_cast(y[yOffsets]); } } ////////////////////////////////////////////////////////////////////////// template static void addBiasCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool isNCHW) { addBiasCuda<<>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, isNCHW); } template __global__ static void addBias2DCuda( const void* vx, const void* vy, void* vz, uint32_t blocks, uint32_t length) { auto y = reinterpret_cast(vy); for (uint32_t b = blockIdx.x; b < blocks; b += gridDim.x) { auto x = reinterpret_cast(vx) + length * b; auto z = reinterpret_cast(vz) + length * b; for (uint32_t e = threadIdx.x; e < length; e += blockDim.x) { z[e] = x[e] + y[e]; } } } template static void addBias2DCudaLauncher(const cudaStream_t *stream, const void* vx, const void* vy, void* vz, uint32_t blocks, uint32_t length) { addBias2DCuda<<<256, 1024, 128, *stream>>>(vx, vy, vz, blocks, length); } ////////////////////////////////////////////////////////////////////////// void addBias(sd::graph::Context& block, const NDArray& input, const NDArray& bias, NDArray& output, const bool isNCHW) { PointersManager manager(block.launchContext(), "addBias"); NDArray::prepareSpecialUse({&output}, {&input, &bias}); if (input.rankOf() == 2 && bias.rankOf() == 1 && input.ordering() == 'c' && output.ordering() == 'c' && input.ews() == 1 && bias.ews() == 1 && input.sizeAt(1) == bias.sizeAt(0)) { BUILD_DOUBLE_SELECTOR(input.dataType(), bias.dataType(), addBias2DCudaLauncher, (block.launchContext()->getCudaStream(), input.specialBuffer(), bias.specialBuffer(), output.specialBuffer(), input.sizeAt(0), bias.sizeAt(0)), FLOAT_TYPES, FLOAT_TYPES); } else { // default case const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = input.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128; BUILD_DOUBLE_SELECTOR(input.dataType(), bias.dataType(), addBiasCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, block.launchContext()->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), bias.specialBuffer(), bias.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), isNCHW), FLOAT_TYPES, FLOAT_TYPES); } NDArray::registerSpecialUse({&output}, {&input, &bias}); manager.synchronize(); } } } }