/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by sgazeos@gmail.com on 26.01.2018. // #include #if NOT_EXCLUDED(OP_moments) #include #include namespace sd { namespace ops { CUSTOM_OP_IMPL(moments, 1, 2, false, 0, -2) { auto input = INPUT_VARIABLE(0); auto means = OUTPUT_VARIABLE(0); auto variances = OUTPUT_VARIABLE(1); std::vector axis = *block.getIArguments(); const bool keepDims = block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false; // axis might be dynamic (i.e. tf mode) if (block.width() > 1 && axis.size() == 0) { auto axisVector = INPUT_VARIABLE(1); helpers::adjustAxis(input->rankOf(), axisVector, axis); // for (int e = 0; e < axisVector->lengthOf(); e++) { // int ca = (int) axisVector->e(e); // if (ca < 0) // ca += input->rankOf(); // // axis.emplace_back(ca); // } } std::vector& dims = axis; input->varianceAlongDimension(variance::SummaryStatsVariance, *variances, false, axis); input->reduceAlongDimension(reduce::Mean, *means, axis, keepDims); return Status::OK(); } DECLARE_SHAPE_FN(moments) { auto axis = *block.getIArguments(); auto input = INPUT_VARIABLE(0); // axis might be dynamic (i.e. tf mode) if (block.width() > 1 && axis.size() == 0) { auto axisVector = INPUT_VARIABLE(1); for (int e = 0; e < axisVector->lengthOf(); e++) { int ca = axisVector->e(e); if (ca < 0) ca += input->rankOf(); axis.emplace_back(ca); } } //std::vector dims = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis}); const bool keepDims = block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false; auto meanShape = ShapeUtils::evalReduceShapeInfo('c', axis, *input, keepDims, false, block.workspace()); auto varianceShape = ShapeUtils::evalReduceShapeInfo('c', axis, *input, keepDims, false, block.workspace()); return SHAPELIST(meanShape, varianceShape); } DECLARE_TYPES(moments) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } } #endif