/* ******************************************************************************
 *
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 *  See the NOTICE file distributed with this work for additional
 *  information regarding copyright ownership.
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// @author raver119@gmail.com
//

#include <system/Environment.h>
#include <loops/transform_same.h>
#include <types/types.h>
#include <system/op_boilerplate.h>

#include <loops/legacy_ops.h>
#include <helpers/DebugHelper.h>

using namespace simdOps;

template <typename X, typename OpType>
__global__ void transformSameSimple(const void *x, const Nd4jLong *xShapeInfo, int xRank,
								void *params,
								void *z, const Nd4jLong *zShapeInfo, int zRank,
								int *allocationPointer,
								void *reductionPointer,
                                    const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffsets) {

	functions::transform::TransformSame<X>::template transformCuda<OpType>(x,xShapeInfo,params,z,zShapeInfo,allocationPointer,reductionPointer, tadShapeInfo, tadOffsets);
}


namespace functions {
    namespace transform {

        template<typename X>
        _CUDA_H void TransformSame<X>::executeTransformShaped(dim3 launchDims, cudaStream_t *stream,
                                                              const int opNum,
                                                              const void *x, const Nd4jLong *xShape, int xRank,
                                                              void *extraParams,
                                                              void *z, const Nd4jLong *zShape, int zRank,
                                                              int *allocationPointer, void *reductionPointer,
                                                              const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffsets) {
			DISPATCH_BY_OPNUM_T(intermediateShaped, PARAMS(launchDims, stream, x, xShape, xRank, extraParams, z, zShape, zRank, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets), TRANSFORM_SAME_OPS);

            DEBUG_KERNEL(stream, opNum);
        }


        template<typename X>
        template <typename OpType>
        __device__ void TransformSame<X>::transformCuda(const void *vx, const Nd4jLong *xShapeInfo,
        												void *vparams,
        												void *vz, const Nd4jLong *zShapeInfo,
        												int *allocationPointer, void *vreductionPointer,
                                                        const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffsets) {

        	auto x = static_cast<const X*>(vx);
		    auto z = static_cast<X*>(vz);
		    auto params = static_cast<X*>(vparams);
		    auto reductionPointer = static_cast<X*>(vreductionPointer);

		    if(OpType::requiresSpecial) {
			    OpType::execSpecialCuda(x,xShapeInfo,z,zShapeInfo,params, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets);
			    return;
		    } else {
		    	__shared__ Nd4jLong xEws;
    	        __shared__ Nd4jLong zEws;
        	    __shared__ char xOrder;
            	__shared__ char zOrder;
            	__shared__ Nd4jLong length;

	            if (threadIdx.x == 0) {

        	        xEws = shape::elementWiseStride(xShapeInfo);
            	    zEws = shape::elementWiseStride(zShapeInfo);
                	xOrder = shape::order(xShapeInfo);
					zOrder = shape::order(zShapeInfo);
					length = shape::length(xShapeInfo);
            	}
            	__syncthreads();

	    	    auto tid = blockIdx.x * blockDim.x + threadIdx.x;
				int totalThreads = gridDim.x * blockDim.x;

		        if(xEws > 0 && zEws > 0 && xOrder == zOrder && xOrder == 'c') {

					for (int i = tid; i < length; i += totalThreads)
						z[i * zEws] = OpType::op(x[i * xEws], params);
		        }
		        else {
					if(vx == vz) {
						for (Nd4jLong i = tid; i < length; i+= totalThreads) {
							auto xOffset = shape::getIndexOffset(i, xShapeInfo);
	    			    	z[xOffset] = OpType::op(x[xOffset], params);
		    	    	}
					}
					else {
		    	    	for (Nd4jLong i = tid; i < length; i+= totalThreads) {
							auto xOffset = shape::getIndexOffset(i, xShapeInfo);
							auto zOffset = shape::getIndexOffset(i, zShapeInfo);
	    			    	z[zOffset] = OpType::op(x[xOffset], params);
		    	    	}
		    		}
		        }
	        }
	    };


		template<typename X>
		template <typename OpType>
		_CUDA_H void TransformSame<X>::intermediateShaped(dim3 launchDims, cudaStream_t *stream, const void *x, const Nd4jLong *xShape, int xRank, void *extraParams, void *z, const Nd4jLong *zShape, int zRank, int *allocationPointer, void *reductionPointer,  const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffsets) {
			transformSameSimple<X, OpType><<<launchDims.x, launchDims.x, launchDims.z, *stream>>>(x, xShape, xRank, extraParams, z, zShape, zRank, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets);
            sd::DebugHelper::checkErrorCode(stream, "transformSame(...) failed");
		}

        BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT TransformSame, , LIBND4J_TYPES);
    }
}