/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com, created on 29/10/17. // @author Yurii Shyrma (iuriish@yahoo.com) // #include #if NOT_EXCLUDED(OP_batchnorm) #include #include namespace nd4j { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(batchnorm, 3, 1, false, 1, 2) { auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray* gamma = nullptr; NDArray* beta = nullptr; auto output = OUTPUT_VARIABLE(0); const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const double epsilon = T_ARG(0); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + (int)applyScale); const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank); // evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes // for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5} std::vector expShape; if(numOfAxes == 1) expShape.push_back(input->sizeAt(axes[0])); else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3} expShape = std::vector(inRank, 1); for(uint i = 0; i < numOfAxes; ++i) expShape[axes[i]] = input->sizeAt(axes[i]); } REQUIRE_TRUE(mean->isSameShape(expShape) , 0, "BATCHNORM op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str()); if(gamma) REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str()); if(beta) REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same for(int i = 1; i < block.width(); ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM op: types of all input arrays should be the same !"); nd4j_debug("MKL-DNN is not used for batchnorm!\n", 0); // formula: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta helpers::batchnorm(input, mean, variance, gamma, beta, output, axes, epsilon); return Status::OK(); } DECLARE_TYPES(batchnorm) { getOpDescriptor()->setAllowedInputTypes({ALL_FLOATS})->setSameMode(true); } DECLARE_SHAPE_FN(batchnorm) { auto inShapeInfo = inputShape->at(0); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo)); auto outShapeInfo = ShapeBuilders::copyShapeInfoAndType(inShapeInfo, outType, false, block.getWorkspace()); // output shape is identical to input shape return SHAPELIST(CONSTANT(outShapeInfo)); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(batchnorm_bp, 4, 3, false, 1, 2) { NDArray* input = INPUT_VARIABLE(0); NDArray* mean = INPUT_VARIABLE(1); NDArray* variance = INPUT_VARIABLE(2); NDArray* dLdO = INPUT_VARIABLE(3); // next epsilon NDArray* gamma = nullptr; NDArray* beta = nullptr; NDArray* dLdI = OUTPUT_VARIABLE(0); NDArray* dLdM = OUTPUT_VARIABLE(1); NDArray* dLdV = OUTPUT_VARIABLE(2); NDArray* dLdG = nullptr; NDArray* dLdB = nullptr; const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const float epsilon = T_ARG(0); if(applyScale) { gamma = INPUT_VARIABLE(4); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(4 + (int)applyScale); dLdB = OUTPUT_VARIABLE(3 + (int)applyScale); } const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM_BP op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank); // evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes // for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5} std::vector expShape; if(numOfAxes == 1) expShape.push_back(input->sizeAt(axes[0])); else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3} expShape = std::vector(inRank, 1); for(uint i = 0; i < numOfAxes; ++i) expShape[axes[i]] = input->sizeAt(axes[i]); } REQUIRE_TRUE(mean->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str()); if(gamma) REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str()); if(beta) REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str()); REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP op: wrong shape of output gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str()); // types of all input arrays should be the same (except dLdO) for(int i = 1; i < block.width() - 1; ++i) if(i != 3) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP op: types of arrays (input, mean, variance, gamma, beta) should be the same !"); // ***** calculations ***** // // formula for forward step: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta // consider mean and variance as constants (since we get them as inputs and don't calculate them) // dLdI = (dLdO * gamma) / (variance + epsilon)^0.5 // dLdV = (-0.5 * gamma * (dLdO * (x - mean))_sum) / (variance + epsilon)^1.5 // dLdM = - (dLdO_sum * gamma) / (variance + epsilon)^0.5 // dLdG = (dLdO * (x - mean))_sum / (variance + epsilon)^0.5 // dLdB = dLdO_sum const auto excludedAxes = ShapeUtils::evalDimsToExclude(inRank, axes); NDArray temp1 = *variance + epsilon; temp1.applyTransform(transform::Reciprocal); // 1 / (variance + epsilon) auto temp2 = temp1.transform(transform::Sqrt); // 1 / (variance + epsilon)^0.5 if(applyScale) temp2 *= *gamma; // gamma / (variance + epsilon)^0.5 NDArray temp3(input); // empty array with same shape as input input->applyBroadcast(nd4j::broadcast::Subtract, axes, mean, &temp3); // input - mean temp3 *= *dLdO; // (input - mean) * dLdO const bool keepUnitiesInShape = inRank == mean->rankOf(); // dLdI dLdO->applyBroadcast(nd4j::broadcast::Multiply, axes, &temp2, dLdI); // dLdM dLdO->reduceAlongDimension(reduce::Sum, dLdM, excludedAxes, keepUnitiesInShape); // dLdO sum over excluded axes // dLdB if(applyOffset) dLdB->assign(dLdM); // dLdM // dLdM->applyPairwiseTransform(nd4j::pairwise::Multiply, temp2); // dLdM->applyTransform(nd4j::transform::Neg); *dLdM = 0; // put zeros so far //dLdV temp3.reduceAlongDimension(reduce::Sum, dLdV, excludedAxes, keepUnitiesInShape); // ((input - mean) * dLdO)_sum // dLdG if(applyScale) { dLdV->applyPairwiseTransform(nd4j::pairwise::Multiply, &temp2, dLdG); // dLdV->assign(dLdG); dLdG->applyPairwiseTransform(nd4j::pairwise::Divide, *gamma); } else // dLdV->applyPairwiseTransform(nd4j::pairwise::Multiply, temp2); // dLdV // dLdV->applyPairwiseTransform(nd4j::pairwise::Multiply, temp1); // *dLdV *= -0.5; *dLdV = 0; // put zeros so far return Status::OK(); } DECLARE_TYPES(batchnorm_bp) { getOpDescriptor() ->setAllowedInputTypes(0, nd4j::DataType::ANY) ->setAllowedInputTypes(1, nd4j::DataType::ANY) ->setAllowedInputTypes(2, nd4j::DataType::ANY) ->setAllowedInputTypes(3, {ALL_FLOATS}) ->setAllowedInputTypes(4, nd4j::DataType::ANY) ->setAllowedInputTypes(5, nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(batchnorm_bp) { Nd4jLong* inShapeInfo = inputShape->at(0); Nd4jLong* meanShapeInfo = inputShape->at(1); const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo)); auto shapes = SHAPELIST(); // dLdI shapeInfo shapes->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(outType, inShapeInfo)); // dLdM shapeInfo shapes->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(outType, meanShapeInfo)); // dLdV shapeInfo (same as dLdM) shapes->push_back(shapes->at(shapes->size()-1)); // dLdG shapeInfo (same as dLdM) if(applyScale) shapes->push_back(shapes->at(shapes->size()-1)); // dLdB shapeInfo (same as dLdM) if(applyOffset) shapes->push_back(shapes->at(shapes->size()-1)); return shapes; } } } #endif