/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119 on 29/10/17 // @author GS 2/16/18 // @author Yurii Shyrma (iuriish@yahoo.com) -> back prop author // #include #if NOT_EXCLUDED(OP_lrn) #include #include namespace sd { namespace ops { DECLARE_TYPES(lrn) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } CONFIGURABLE_OP_IMPL(lrn, 1, 1, true, 3, 1) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); REQUIRE_TRUE(input->rankOf() == 4, 0, "lrn: Input rank of 4 expected, but got %i instead", input->rankOf()); double alpha = T_ARG(1); double beta = T_ARG(2); double bias = T_ARG(0); int depth = INT_ARG(0); return helpers::lrnFunctor(block, input, output, depth, bias, alpha, beta); } DECLARE_TYPES(lrn_bp) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } CONFIGURABLE_OP_IMPL(lrn_bp, 2, 1, true, 3, 1) { auto input = INPUT_VARIABLE(0); auto gradO = INPUT_VARIABLE(1); auto gradI = OUTPUT_VARIABLE(0); REQUIRE_TRUE(input->rankOf() == 4, 0, "lrn_bp: Input rank of 4 expected, but got %i instead", input->rankOf()); REQUIRE_TRUE(input->isSameShape(gradO), 0, "lrn_bp: Both input and grad_output should have the same shape, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); // FIXME: double/float? float bias = T_ARG(0); float alpha = T_ARG(1); float beta = T_ARG(2); int depth = INT_ARG(0); helpers::lrnBP(block, *input, *gradO, *gradI, depth, bias, alpha, beta); return Status::OK(); } DECLARE_SYN(local_response_normalization, lrn); } } #endif