/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 29.08.2018 // #include #if NOT_EXCLUDED(OP_sparse_softmax_cross_entropy_loss_with_logits) #include #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(sparse_softmax_cross_entropy_loss_with_logits, 2, 1, false, 0, 0) { auto labels = INPUT_VARIABLE(0); auto logits = INPUT_VARIABLE(1); auto output = OUTPUT_VARIABLE(0); const int labelsRank = labels->rankOf(); const int logitsRank = logits->rankOf(); // input validation REQUIRE_TRUE(labelsRank == logitsRank - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsRank, logitsRank); std::vector labelsShape = labels->getShapeAsVector(); // this is correct std::vector logitsShape = logits->getShapeAsVector(); logitsShape.pop_back(); bool equalSoft = logitsShape == labelsShape; REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShape).c_str(), ShapeUtils::shapeAsString(logitsShape).c_str()); std::vector dimension = {-1}; auto maxAlongDim = logits->reduceAlongDimension(reduce::Max, dimension, true); auto logitsExp = (*logits - maxAlongDim).transform(transform::Exp, nullptr); auto logSoftMax = -(( logitsExp / logitsExp.reduceAlongDimension(reduce::Sum, dimension, true) ).transform(transform::Log)); helpers::scatterForLoss(block.launchContext(), *labels, logSoftMax, *output, false); return Status::OK(); } ////////////////////////////////////////////////////////////////////////// DECLARE_TYPES(sparse_softmax_cross_entropy_loss_with_logits) { getOpDescriptor()->setAllowedInputTypes(0, {ALL_INTS})->setAllowedInputTypes(1, {ALL_FLOATS})->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(sparse_softmax_cross_entropy_loss_with_logits) { auto labelsShapeInfo = inputShape->at(0); auto logitsShapeInfo = inputShape->at(1); REQUIRE_TRUE(labelsShapeInfo[0] == logitsShapeInfo[0] - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsShapeInfo[0], logitsShapeInfo[0]); bool equalSoft = true; for (int i = 1; i < labelsShapeInfo[0]; ++i) if (labelsShapeInfo[i] != logitsShapeInfo[i]) { equalSoft = false; break; } REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str()); auto outShapeInfo = ShapeBuilders::copyShapeInfoAndType(labelsShapeInfo, logitsShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(outShapeInfo)); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(sparse_softmax_cross_entropy_loss_with_logits_grad, 2, 1, false, 0, 0) { auto labels = INPUT_VARIABLE(0); auto logits = INPUT_VARIABLE(1); auto dLdp = OUTPUT_VARIABLE(0); // dL/dlogits const int labelsRank = labels->rankOf(); const int logitsRank = logits->rankOf(); // input validation REQUIRE_TRUE(labelsRank == logitsRank - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsRank, logitsRank); std::vector labelsShape = labels->getShapeAsVector(); // this is correct std::vector logitsShape = logits->getShapeAsVector(); logitsShape.pop_back(); bool equalSoft = logitsShape == labelsShape; REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShape).c_str(), ShapeUtils::shapeAsString(logitsShape).c_str()); std::vector dimension = {-1}; NDArray softmax = (*logits - logits->reduceAlongDimension(reduce::Max, dimension, true)).transform(transform::Exp); softmax /= softmax.reduceAlongDimension(reduce::Sum, dimension, true); // dEdp = softmax - 1 (or 0) dLdp->assign(softmax); // subtract unities at appropriate indexes of dLdp array helpers::scatterForLoss(block.launchContext(), *labels, *dLdp, *labels /*actually third array is unnecessary for gradient calculation*/, true); return Status::OK(); } ////////////////////////////////////////////////////////////////////////// DECLARE_TYPES(sparse_softmax_cross_entropy_loss_with_logits_grad) { getOpDescriptor()->setAllowedInputTypes(0, {ALL_INTS})->setAllowedInputTypes(1, {ALL_FLOATS})->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(sparse_softmax_cross_entropy_loss_with_logits_grad) { auto labelsShapeInfo = inputShape->at(0); auto logitsShapeInfo = inputShape->at(1); REQUIRE_TRUE(labelsShapeInfo[0] == logitsShapeInfo[0] - 1, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: input arrays should satisfy relation (labels_rank = logits_rank - 1), but got labels_rank = %i and logits_rank = %i instead !", labelsShapeInfo[0], logitsShapeInfo[0]); bool equalSoft = true; for (int i = 1; i < labelsShapeInfo[0]; ++i) if (labelsShapeInfo[i] != logitsShapeInfo[i]) { equalSoft = false; break; } REQUIRE_TRUE(equalSoft, 0, "SPARSE_SOFTMAX_CROSS_ENTROPY_LOSS_WITH_LOGITS_GRAD OP: wrong shape of labels array, its shape should be the same as logits shape with last dimension excluded, however got labels_shape = %s and logits_shape = %s instead !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str()); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo)); Nd4jLong *dLdpShapeInfo = ShapeBuilders::copyShapeInfoAndType(logitsShapeInfo, outType, false, block.getWorkspace()); return SHAPELIST(CONSTANT(dLdpShapeInfo)); } } } #endif