/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by GS at 2/26/2018 // #include #include #include #if NOT_EXCLUDED(OP_matrix_determinant) namespace sd { namespace ops { CUSTOM_OP_IMPL(matrix_determinant, 1, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); REQUIRE_TRUE(input->rankOf() >=2, 0, "matrix_determinant: The rank of input array should not less than 2, but %i is given", input->rankOf()); REQUIRE_TRUE(input->sizeAt(-1) == input->sizeAt(-2), 0, "matrix_determinant: The last two dimmensions should be equal, but %i and %i are given", input->sizeAt(-1), input->sizeAt(-2)); return helpers::determinant(block.launchContext(), input, output); } DECLARE_SHAPE_FN(matrix_determinant) { auto inShape = inputShape->at(0); Nd4jLong const* determinantShape; int targetRank = shape::rank(inShape) - 2; // last two dimensions will be reduced to scalar if (targetRank == 0) { // scalar only determinantShape = ConstantShapeHelper::getInstance().scalarShapeInfo(ArrayOptions::dataType(inShape)); } else if (targetRank == 1) { // vector determinantShape = ConstantShapeHelper::getInstance().vectorShapeInfo(shape::sizeAt(inShape, 0), ArrayOptions::dataType(inShape)); } else { // only two last dimensions are excluded determinantShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), targetRank, shape::shapeOf(inShape)); } return SHAPELIST(determinantShape); } DECLARE_TYPES(matrix_determinant) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } } #endif #if NOT_EXCLUDED(OP_log_matrix_determinant) namespace sd { namespace ops { DECLARE_TYPES(log_matrix_determinant) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } CUSTOM_OP_IMPL(log_matrix_determinant, 1, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); REQUIRE_TRUE(input->rankOf() >=2, 0, "log_matrix_determinant: The rank of input array should not less than 2, but %i is given", input->rankOf()); REQUIRE_TRUE(input->sizeAt(-1) == input->sizeAt(-2), 0, "log_matrix_determinant: The last two dimensions should be equal, but %i and %i are given", input->sizeAt(-1), input->sizeAt(-2)); return helpers::logAbsDeterminant(block.launchContext(), input, output); } DECLARE_SHAPE_FN(log_matrix_determinant) { auto inShape = inputShape->at(0); Nd4jLong const* determinantShape; int targetRank = shape::rank(inShape) - 2; // last two dimensions will be reduced to scalar if (targetRank == 0) { // scalar only determinantShape = ConstantShapeHelper::getInstance().scalarShapeInfo(ArrayOptions::dataType(inShape)); } else if (targetRank == 1) { // vector determinantShape = ConstantShapeHelper::getInstance().vectorShapeInfo(shape::sizeAt(inShape, 0), ArrayOptions::dataType(inShape)); } else { // only two last dimensions are excluded determinantShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), targetRank, shape::shapeOf(inShape)); } return SHAPELIST(determinantShape); } } } #endif #if NOT_EXCLUDED(OP_logdet) namespace sd { namespace ops { DECLARE_TYPES(logdet) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } CUSTOM_OP_IMPL(logdet, 1, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_NULLIFIED(0); REQUIRE_TRUE(input->rankOf() >=2, 0, "logdet: The rank of input array should not less than 2, but %i is given", input->rankOf()); REQUIRE_TRUE(input->sizeAt(-1) == input->sizeAt(-2), 0, "logdet: The last two dimmensions should be equal, but %i and %i are given", input->sizeAt(-1), input->sizeAt(-2)); REQUIRE_TRUE(helpers::checkCholeskyInput(block.launchContext(), input), 0, "logdet: The input tensor should be positive-defined hermitian."); return helpers::logdetFunctor(block.launchContext(), input, output); } DECLARE_SHAPE_FN(logdet) { auto inShape = inputShape->at(0); Nd4jLong const* determinantShape; int targetRank = shape::rank(inShape) - 2; // last two dimensions will be reduced to scalar if (targetRank == 0) { // scalar only determinantShape = ConstantShapeHelper::getInstance().scalarShapeInfo(ArrayOptions::dataType(inShape)); } else if (targetRank == 1) { // vector determinantShape = ConstantShapeHelper::getInstance().vectorShapeInfo(shape::sizeAt(inShape, 0), ArrayOptions::dataType(inShape)); } else { // only two last dimensions are excluded determinantShape = ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), targetRank, shape::shapeOf(inShape)); } return SHAPELIST(determinantShape); } } } #endif