/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author George A. Shulinok // #include #if NOT_EXCLUDED(OP_adjust_contrast) #include #include namespace sd { namespace ops { //////////////////////////////////////////////////////////////////// CONFIGURABLE_OP_IMPL(adjust_contrast, 1, 1, true, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); // just skip op if input is empty if (input->isEmpty()) return Status::OK(); REQUIRE_TRUE(block.numT() > 0 || block.width() > 1, 0, "ADJUST_CONTRAST: Scale factor required"); REQUIRE_TRUE(input->rankOf() > 2, 0, "ADJUST_CONTRAST: op expects rank of input array to be >= 3, but got %i instead", input->rankOf()); // REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1)); NDArray* factor = nullptr; if(block.width() > 1) factor = INPUT_VARIABLE(1); else { factor = new NDArray(output->dataType(), block.launchContext()); factor->p(0, T_ARG(0)); } // fill up axes vector first std::vector axes(input->rankOf() - 1); for (auto i = 0; i < axes.size(); ++i) axes[i] = i; // mean as reduction for last dimension set auto mean = input->reduceAlongDimension(reduce::Mean, axes); // this is contrast calculation output->assign((*input - mean) * (*factor) + mean); if(block.width() == 1) delete factor; return Status::OK(); } DECLARE_TYPES(adjust_contrast) { getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}) ->setSameMode(true); } //////////////////////////////////////////////////////////////////// CONFIGURABLE_OP_IMPL(adjust_contrast_v2, 1, 1, true, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); // just skip op if input is empty if (input->isEmpty()) return Status::OK(); REQUIRE_TRUE(input->rankOf() > 2, 0, "ADJUST_CONTRAST_V2: op expects rank of input array to be >= 3, but got %i instead", input->rankOf()); // REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST_V2: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1)); REQUIRE_TRUE(block.numT() > 0 || block.width() > 1, 0, "ADJUST_CONTRAST_V2: Scale factor required"); NDArray* factor = nullptr; auto size = input->sizeAt(-2) * input->sizeAt(-3); auto channels = input->sizeAt(-1); auto batch = input->lengthOf() / (size * channels); auto input3D = input->reshape(input->ordering(), {batch, size, channels}); auto output3D = input->reshape(input->ordering(), {batch, size, channels}); if(block.width() > 1) factor = INPUT_VARIABLE(1); else { factor = new NDArray(output->dataType(), block.launchContext()); factor->p(0, T_ARG(0)); } std::vector axes({1}); // dim 1 of pseudoresult // mean as reduction for last dimension set over size (dim 1) of result3D auto mean = input3D.reduceAlongDimension(reduce::Mean, axes); // result as (x - mean) * factor + mean auto temp = input3D.ulike(); input3D.applyBroadcast(broadcast::Subtract, {0, 2}, mean, temp); temp.applyScalarArr(scalar::Multiply, *factor, temp); temp.applyBroadcast(broadcast::Add, {0, 2}, mean, output3D); output->assign(output3D); if(block.width() == 1) delete factor; return Status::OK(); } DECLARE_TYPES(adjust_contrast_v2) { getOpDescriptor()->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}) ->setSameMode(true); } } } #endif