/******************************************************************************* * Copyright (c) 2020 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ import org.eclipse.python4j.*; import org.junit.Assert; import org.junit.Test; import org.junit.runner.RunWith; import org.junit.runners.Parameterized; import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.concurrency.AffinityManager; import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.factory.Nd4j; import org.nd4j.nativeblas.OpaqueDataBuffer; import javax.annotation.concurrent.NotThreadSafe; import java.lang.reflect.Method; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.List; @NotThreadSafe @RunWith(Parameterized.class) public class PythonNumpyBasicTest { private DataType dataType; private long[] shape; public PythonNumpyBasicTest(DataType dataType, long[] shape, String dummyArg) { this.dataType = dataType; this.shape = shape; } @Parameterized.Parameters(name = "{index}: Testing with DataType={0}, shape={2}") public static Collection params() { DataType[] types = new DataType[] { DataType.BOOL, DataType.FLOAT16, DataType.BFLOAT16, DataType.FLOAT, DataType.DOUBLE, DataType.INT8, DataType.INT16, DataType.INT32, DataType.INT64, DataType.UINT8, DataType.UINT16, DataType.UINT32, DataType.UINT64 }; long[][] shapes = new long[][]{ new long[]{2, 3}, new long[]{3}, new long[]{1}, new long[]{} // scalar }; List ret = new ArrayList<>(); for (DataType type: types){ for (long[] shape: shapes){ ret.add(new Object[]{type, shape, Arrays.toString(shape)}); } } return ret; } @Test public void testConversion(){ INDArray arr = Nd4j.zeros(dataType, shape); PythonObject npArr = PythonTypes.convert(arr); INDArray arr2 = PythonTypes.getPythonTypeForPythonObject(npArr).toJava(npArr); if (dataType == DataType.BFLOAT16){ arr = arr.castTo(DataType.FLOAT); } Assert.assertEquals(arr,arr2); } @Test public void testExecution(){ List inputs = new ArrayList<>(); INDArray x = Nd4j.ones(dataType, shape); INDArray y = Nd4j.zeros(dataType, shape); INDArray z = (dataType == DataType.BOOL)?x:x.mul(y.add(2)); z = (dataType == DataType.BFLOAT16)? z.castTo(DataType.FLOAT): z; PythonType arrType = PythonTypes.get("numpy.ndarray"); inputs.add(new PythonVariable<>("x", arrType, x)); inputs.add(new PythonVariable<>("y", arrType, y)); List outputs = new ArrayList<>(); PythonVariable output = new PythonVariable<>("z", arrType); outputs.add(output); String code = (dataType == DataType.BOOL)?"z = x":"z = x * (y + 2)"; if (shape.length == 0){ // scalar special case code += "\nimport numpy as np\nz = np.asarray(float(z), dtype=x.dtype)"; } PythonExecutioner.exec(code, inputs, outputs); INDArray z2 = output.getValue(); Assert.assertEquals(z.dataType(), z2.dataType()); Assert.assertEquals(z, z2); } @Test public void testInplaceExecution(){ if (dataType == DataType.BOOL || dataType == DataType.BFLOAT16)return; if (shape.length == 0) return; List inputs = new ArrayList<>(); INDArray x = Nd4j.ones(dataType, shape); INDArray y = Nd4j.zeros(dataType, shape); INDArray z = x.mul(y.add(2)); // Nd4j.getAffinityManager().ensureLocation(z, AffinityManager.Location.HOST); PythonType arrType = PythonTypes.get("numpy.ndarray"); inputs.add(new PythonVariable<>("x", arrType, x)); inputs.add(new PythonVariable<>("y", arrType, y)); List outputs = new ArrayList<>(); PythonVariable output = new PythonVariable<>("x", arrType); outputs.add(output); String code = "x *= y + 2"; PythonExecutioner.exec(code, inputs, outputs); INDArray z2 = output.getValue(); Assert.assertEquals(x.dataType(), z2.dataType()); Assert.assertEquals(z.dataType(), z2.dataType()); Assert.assertEquals(x, z2); Assert.assertEquals(z, z2); Assert.assertEquals(x.data().pointer().address(), z2.data().pointer().address()); if("CUDA".equalsIgnoreCase(Nd4j.getExecutioner().getEnvironmentInformation().getProperty("backend"))){ Assert.assertEquals(getDeviceAddress(x), getDeviceAddress(z2)); } } private static long getDeviceAddress(INDArray array){ if(!"CUDA".equalsIgnoreCase(Nd4j.getExecutioner().getEnvironmentInformation().getProperty("backend"))){ throw new IllegalStateException("Cannot ge device pointer for non-CUDA device"); } //Use reflection here as OpaqueDataBuffer is only available on BaseCudaDataBuffer and BaseCpuDataBuffer - not DataBuffer/BaseDataBuffer // due to it being defined in nd4j-native-api, not nd4j-api try { Class c = Class.forName("org.nd4j.linalg.jcublas.buffer.BaseCudaDataBuffer"); Method m = c.getMethod("getOpaqueDataBuffer"); OpaqueDataBuffer db = (OpaqueDataBuffer) m.invoke(array.data()); long address = db.specialBuffer().address(); return address; } catch (Throwable t){ throw new RuntimeException("Error getting OpaqueDataBuffer", t); } } }