/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma, created on 05.04.2018 // #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(dynamic_bidirectional_rnn, 7, 4, false, 0, 0) { auto x = INPUT_VARIABLE(0); // input [time x bS x inSize] or [bS x time x inSize], shape depends on timeMajor parameter auto WxFW = INPUT_VARIABLE(1); // input-to-hidden weights for forward RNN, [inSize x numUnitsFW] auto WhFW = INPUT_VARIABLE(2); // hidden-to-hidden weights for forward RNN, [numUnitsFW x numUnitsFW] auto bFW = INPUT_VARIABLE(3); // biases for forward RNN, [2*numUnitsFW] auto WxBW = INPUT_VARIABLE(4); // input-to-hidden weights for backward RNN, [inSize x numUnitsBW] auto WhBW = INPUT_VARIABLE(5); // hidden-to-hidden weights for backward RNN, [numUnitsBW x numUnitsBW] auto bBW = INPUT_VARIABLE(6); // biases for backward RNN, [2*v] NDArray* h0FW = nullptr; // initial cell output for forward RNN (at time step = 0) [bS x numUnitsFW] NDArray* h0BW = nullptr; // initial cell output for backward RNN (at time step = 0) [bS x numUnitsBW] NDArray* maxTimeStep = nullptr; // vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep const int timeMajor = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // if non zero then [time, bS, ...], else [bS, time, ...] switch(block.width()) { case 8: maxTimeStep = INPUT_VARIABLE(7); break; case 9: h0FW = INPUT_VARIABLE(7); h0BW = INPUT_VARIABLE(8); break; case 10: h0FW = INPUT_VARIABLE(7); h0BW = INPUT_VARIABLE(8); maxTimeStep = INPUT_VARIABLE(9); break; } auto hFW = OUTPUT_VARIABLE(0); // cell outputs for forward RNN [time x bS x numUnitsFW] or [bS x time x numUnitsFW], shape depends on timeMajor parameter auto hBW = OUTPUT_VARIABLE(1); // cell outputs for backward RNN [time x bS x numUnitsBW] or [bS x time x numUnitsBW], shape depends on timeMajor parameter auto hFWFinal = OUTPUT_VARIABLE(2); // final cell out for forward RNN [bS x numUnitsFW] auto hBWFinal = OUTPUT_VARIABLE(3); // final cell out for backward RNN [bS x numUnitsBF] REQUIRE_TRUE(x->rankOf() == 3, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input array must have rank = 3, but got %i instead !", x->rankOf()); REQUIRE_TRUE(WxFW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for forward RNN) must have rank = 2, but got %i instead !", WxFW->rankOf()); REQUIRE_TRUE(WxBW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for backward RNN) must have rank = 2, but got %i instead !", WxBW->rankOf()); const int inRank = x->rankOf(); const int time = timeMajor ? x->sizeAt(0) : x->sizeAt(1); const int bS = timeMajor ? x->sizeAt(1) : x->sizeAt(0); const int numUnitsFW = WxFW->sizeAt(1); const int numUnitsBW = WxBW->sizeAt(1); std::vector expectedWhFWshape = {numUnitsFW, numUnitsFW}; std::vector expectedWhBWshape = {numUnitsBW, numUnitsBW}; std::vector expectedbFWshape = {2*numUnitsFW}; std::vector expectedbBWshape = {2*numUnitsBW}; REQUIRE_TRUE(WhFW->isSameShape(expectedWhFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhFWshape).c_str(), ShapeUtils::shapeAsString(WhFW).c_str()); REQUIRE_TRUE(WhBW->isSameShape(expectedWhBWshape) , 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhBWshape).c_str(), ShapeUtils::shapeAsString(WhBW).c_str()); REQUIRE_TRUE(bFW->isSameShape(expectedbFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for forward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbFWshape).c_str(), ShapeUtils::shapeAsString(bFW).c_str()); REQUIRE_TRUE(bBW->isSameShape(expectedbBWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for backward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbBWshape).c_str(), ShapeUtils::shapeAsString(bBW).c_str()); if(h0FW) { std::vector expectedh0FWshape = {bS, numUnitsFW}; REQUIRE_TRUE(h0FW->isSameShape(expectedh0FWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0FWshape).c_str(), ShapeUtils::shapeAsString(h0FW).c_str()); } if(h0BW) { std::vector expectedh0BWshape = {bS, numUnitsBW}; REQUIRE_TRUE(h0BW->isSameShape(expectedh0BWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0BWshape).c_str(), ShapeUtils::shapeAsString(h0BW).c_str()); } if(maxTimeStep) { std::vector expectedmaxTimeStepshape = {bS}; REQUIRE_TRUE(maxTimeStep->isSameShape(expectedmaxTimeStepshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of maxTimeStep array, expected is [%i], but got %s instead !", bS, ShapeUtils::shapeAsString(maxTimeStep).c_str()); } // forward steps sd::ops::dynamic_rnn dynamicRnn; auto resultsFW = dynamicRnn.evaluate({x, WxFW, WhFW, bFW, h0FW, maxTimeStep}, {timeMajor}); hFW->assign(resultsFW.at(0)); // [time x bS x numUnitsFW] or [bS x time x numUnitsFW] hFWFinal->assign(resultsFW.at(1)); auto seqLen = maxTimeStep; if(seqLen == nullptr) { // FIXME: which datatype should be used here? seqLen = new NDArray(x->ordering(), {bS}, sd::DataType::INT64, block.launchContext()); seqLen->assign(time); // set each element of seqLen to be equal to time } // reverse x sd::ops::reverse_sequence reverse; auto resultsIn = timeMajor ? reverse.evaluate({x, seqLen}, {0, 1}) : reverse.evaluate({x, seqLen}, {1, 0}); REQUIRE_TRUE (resultsIn.status() == ND4J_STATUS_OK, 0, "dynamic_bidirectional_rnn: there is a problem with reverse on the sequence."); auto revInput = resultsIn.at(0); // backward steps auto resultsBW = dynamicRnn.evaluate({revInput, WxBW, WhBW, bBW, h0BW, maxTimeStep}, {timeMajor}); auto hBWtemp = resultsBW.at(0); // [time x bS x numUnitsBW] or [ bS x time xnumUnitsBW] hBWFinal->assign(resultsBW.at(1)); // reverse hBWtemp auto resultsOut = timeMajor ? reverse.evaluate({hBWtemp, seqLen}, {0, 1}) : reverse.evaluate({hBWtemp, seqLen}, {1, 0}); hBW->assign(resultsOut.at(0)); if(seqLen != maxTimeStep) delete seqLen; return Status::OK(); } DECLARE_TYPES(dynamic_bidirectional_rnn) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(dynamic_bidirectional_rnn) { auto x = INPUT_VARIABLE(0); // input [time x bS x inSize] or [bS x time x inSize], shape depends on timeMajor parameter auto WxFW = INPUT_VARIABLE(1); // input-to-hidden weights for forward RNN, [inSize x numUnitsFW] auto WhFW = INPUT_VARIABLE(2); // hidden-to-hidden weights for forward RNN, [numUnitsFW x numUnitsFW] auto bFW = INPUT_VARIABLE(3); // biases for forward RNN, [2*numUnitsFW] auto WxBW = INPUT_VARIABLE(4); // input-to-hidden weights for backward RNN, [inSize x numUnitsBW] auto WhBW = INPUT_VARIABLE(5); // hidden-to-hidden weights for backward RNN, [numUnitsBW x numUnitsBW] auto bBW = INPUT_VARIABLE(6); // biases for backward RNN, [2*numUnitsBW] NDArray* h0FW = nullptr; // initial cell output for forward RNN (at time step = 0) [bS x numUnitsFW] NDArray* h0BW = nullptr; // initial cell output for backward RNN (at time step = 0) [bS x numUnitsBW] NDArray* maxTimeStep = nullptr; // vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep const int timeMajor = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // if true then [time, bS, ...], else [bS, time, ...] switch(block.width()) { case 8: maxTimeStep = INPUT_VARIABLE(7); break; case 9: h0FW = INPUT_VARIABLE(7); h0BW = INPUT_VARIABLE(8); break; case 10: h0FW = INPUT_VARIABLE(7); h0BW = INPUT_VARIABLE(8); maxTimeStep = INPUT_VARIABLE(9); break; } REQUIRE_TRUE(x->rankOf() == 3, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input array must have rank = 3, but got %i instead !", x->rankOf()); REQUIRE_TRUE(WxFW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for forward RNN) must have rank = 2, but got %i instead !", WxFW->rankOf()); REQUIRE_TRUE(WxBW->rankOf() == 2, 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: input-to-hidden weights array (for backward RNN) must have rank = 2, but got %i instead !", WxBW->rankOf()); const int inRank = x->rankOf(); const int time = timeMajor ? x->sizeAt(0) : x->sizeAt(1); const int bS = timeMajor ? x->sizeAt(1) : x->sizeAt(0); const int numUnitsFW = WxFW->sizeAt(1); const int numUnitsBW = WxBW->sizeAt(1); std::vector expectedWhFWshape = {numUnitsFW, numUnitsFW}; std::vector expectedWhBWshape = {numUnitsBW, numUnitsBW}; std::vector expectedbFWshape = {2*numUnitsFW}; std::vector expectedbBWshape = {2*numUnitsBW}; REQUIRE_TRUE(WhFW->isSameShape(expectedWhFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhFWshape).c_str(), ShapeUtils::shapeAsString(WhFW).c_str()); REQUIRE_TRUE(WhBW->isSameShape(expectedWhBWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of hidden-to-hidden weights array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedWhBWshape).c_str(), ShapeUtils::shapeAsString(WhBW).c_str()); REQUIRE_TRUE(bFW->isSameShape(expectedbFWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for forward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbFWshape).c_str(), ShapeUtils::shapeAsString(bFW).c_str()); REQUIRE_TRUE(bBW->isSameShape(expectedbBWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of biases array (for backward RNN), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedbBWshape).c_str(), ShapeUtils::shapeAsString(bBW).c_str()); if(h0FW) { std::vector expectedh0FWshape = {bS, numUnitsFW}; REQUIRE_TRUE(h0FW->isSameShape(expectedh0FWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for forward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0FWshape).c_str(), ShapeUtils::shapeAsString(h0FW).c_str()); } if(h0BW) { std::vector expectedh0BWshape = {bS, numUnitsBW}; REQUIRE_TRUE(h0BW->isSameShape(expectedh0BWshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of initial cell output array (for backward RNN), expected is %s but got %s instead !", ShapeUtils::shapeAsString(expectedh0BWshape).c_str(), ShapeUtils::shapeAsString(h0BW).c_str()); } if(maxTimeStep) { std::vector expectedmaxTimeStepshape = {bS}; REQUIRE_TRUE(maxTimeStep->isSameShape(expectedmaxTimeStepshape), 0, "DYNAMIC_BIDIRECTIONAL_RNN custom operation: wrong shape of maxTimeStep array, expected is [%i], but got %s instead !", bS, ShapeUtils::shapeAsString(maxTimeStep).c_str()); } // evaluate output shapeInfos Nd4jLong *hFWShapeInfo(nullptr), *hBWShapeInfo(nullptr), *hFWFinalPrevShapeInfo(nullptr), *hBWFinalPrevShapeInfo(nullptr); ALLOCATE(hFWShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank), Nd4jLong); ALLOCATE(hBWShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank), Nd4jLong); ALLOCATE(hFWFinalPrevShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank-1), Nd4jLong); ALLOCATE(hBWFinalPrevShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inRank-1), Nd4jLong); hFWShapeInfo[0] = hBWShapeInfo[0] = inRank; hFWShapeInfo[1] = hBWShapeInfo[1] = timeMajor ? time : bS; hFWShapeInfo[2] = hBWShapeInfo[2] = timeMajor ? bS : time; hFWShapeInfo[3] = numUnitsFW; hBWShapeInfo[3] = numUnitsBW; hFWFinalPrevShapeInfo[0] = hBWFinalPrevShapeInfo[0] = inRank-1; hFWFinalPrevShapeInfo[1] = hBWFinalPrevShapeInfo[1] = bS; hFWFinalPrevShapeInfo[2] = numUnitsFW; hBWFinalPrevShapeInfo[2] = numUnitsBW; ShapeUtils::updateStridesAndType(hFWShapeInfo, x->shapeInfo(), x->ordering()); ShapeUtils::updateStridesAndType(hBWShapeInfo, x->shapeInfo(), x->ordering()); ShapeUtils::updateStridesAndType(hFWFinalPrevShapeInfo, x->shapeInfo(), x->ordering()); ShapeUtils::updateStridesAndType(hBWFinalPrevShapeInfo, x->shapeInfo(), x->ordering()); return SHAPELIST(CONSTANT(hFWShapeInfo), CONSTANT(hBWShapeInfo), CONSTANT(hFWFinalPrevShapeInfo), CONSTANT(hBWFinalPrevShapeInfo)); } } }