/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by raver on 4/9/2018. // #include <loops/indexreduce.h> #include <system/op_boilerplate.h> #include <helpers/Loops.h> #include <types/types.h> #include <helpers/ConstantTadHelper.h> #include <execution/Threads.h> #include <loops/legacy_ops.h> using namespace simdOps; namespace functions { namespace indexreduce { //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> Nd4jLong IndexReduce<X,Y>::execScalar( const int opNum, const void *x, const Nd4jLong *xShapeInfo, void *extraParams) { RETURNING_DISPATCH_BY_OPNUM_TT(execScalar, PARAMS(x, xShapeInfo, extraParams), INDEX_REDUCE_OPS); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> void IndexReduce<X,Y>::exec(const int opNum, const void *x, const Nd4jLong *xShapeInfo, void *extraParams, void *z, const Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffset) { DISPATCH_BY_OPNUM_TT(exec, PARAMS(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffset), INDEX_REDUCE_OPS); } //////////////////////////////////////////////////////////////////////// template <typename X, typename Y> template<typename OpType> Nd4jLong IndexReduce<X, Y>::execScalar(const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams) { auto x = reinterpret_cast<const X *>(vx); auto extraParams = reinterpret_cast<X *>(vextraParams); //T startingVal = OpType::startingValue(x); auto startingIndex = OpType::startingIndexValue(x); auto len = shape::length(xShapeInfo); auto xEws = shape::elementWiseStride(xShapeInfo); sd::OmpLaunchHelper info(len); uint xShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast); int maxThreads = sd::math::nd4j_min<int>(64, sd::Environment::getInstance().maxThreads()); IndexValue<X> intermediatery[64]; for (int e = 0; e < maxThreads; e++) intermediatery[e].index = -1; if (xEws == 1 && shape::order(xShapeInfo) == 'c') { auto func = PRAGMA_THREADS_FOR { intermediatery[thread_id] = OpType::startingIndexValue(x); for (auto i = start; i < stop; i++) { IndexValue<X> curr(x[i], i); intermediatery[thread_id] = OpType::update(intermediatery[thread_id], curr, extraParams); } }; maxThreads = samediff::Threads::parallel_for(func, 0, len, 1, maxThreads); for (int e = 0; e < maxThreads; e++) startingIndex = OpType::update(startingIndex, intermediatery[e], extraParams); } else { auto func = PRAGMA_THREADS_FOR { intermediatery[thread_id] = OpType::startingIndexValue(x); for (auto i = start; i < stop; i++) { auto offset = shape::indexOffset(i, xShapeInfo, xShapeInfoCast, canCastX); IndexValue<X> curr(x[offset], i); intermediatery[thread_id] = OpType::update(intermediatery[thread_id], curr, extraParams); } }; maxThreads = samediff::Threads::parallel_for(func, 0, len, 1, maxThreads); for (int e = 0; e < maxThreads; e++) startingIndex = OpType::update(startingIndex, intermediatery[e], extraParams); } return startingIndex.index; } //////////////////////////////////////////////////////////////////////// template <typename X, typename Z> template<typename OpType> void IndexReduce<X, Z>::exec(const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams, void *vz, const Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, const Nd4jLong *tadShapeInfo, const Nd4jLong *tadOffset) { auto x = reinterpret_cast<const X *>(vx); auto z = reinterpret_cast<Z *>(vz); auto extraParams = reinterpret_cast<X *>(vextraParams); const Nd4jLong zLen = shape::length(zShapeInfo); if(sd::ArrayOptions::arrayType(xShapeInfo) == sd::ArrayType::EMPTY) { if(sd::ArrayOptions::arrayType(zShapeInfo) == sd::ArrayType::EMPTY) return; const auto indexValue = OpType::startingIndexValue(x); for (Nd4jLong i = 0; i < zLen; i++) z[i] = (Z) indexValue.index; return; } if(shape::isScalar(zShapeInfo)) { z[0] = (Z) execScalar<OpType>(x,xShapeInfo,extraParams); return; } auto tadOnlyShapeInfo = tadShapeInfo; auto tadOffsets = tadOffset; if (tadOnlyShapeInfo == nullptr || tadOffsets == nullptr) { if (dimensionLength < 1) return; auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(xShapeInfo, dimension, dimensionLength); tadOnlyShapeInfo = tadPack.primaryShapeInfo(); tadOffsets = tadPack.primaryOffsets(); } sd::IndexReductionLoops<X,Z>::template loopIndexReduce<OpType>(x, xShapeInfo, z, zShapeInfo, tadOnlyShapeInfo, tadOffsets, extraParams); } } }