/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author sgazeos@gmail.com // #include #include namespace sd { namespace ops { namespace helpers { // // nudge - nudged min max over scale // scale = (Max - Min) / (quantMax - quantMin) // quantMin = 0 or 1, quantMax = 2^b - 1 == (1 << b) - 1 // template static void nudge(T min, T max, int quantMin, int quantMax, T* scale, T* nudgedMin, T* nudgedMax) { // floating point instead integers T quantMaxF = static_cast(quantMax); T quantMinF = static_cast(quantMin); // compute scale *scale = (max - min) / (quantMaxF - quantMinF); // compute left bound point auto zeroPointFromMin = quantMinF - min / *scale; // bound zero point to conform with range [0 or 1, 2^b - 1] uint16_t const nudged_zero_point = [zeroPointFromMin, quantMin, quantMax, quantMaxF, quantMinF] { if (zeroPointFromMin < quantMinF) { return static_cast(quantMin); } if (zeroPointFromMin > quantMaxF) { return static_cast(quantMax); } return (uint16_t)sd::math::nd4j_round(zeroPointFromMin); }(); // compute nudged min and max with computed nudged zero point *nudgedMin = (quantMinF - nudged_zero_point) * (*scale); *nudgedMax = (quantMaxF - nudged_zero_point) * (*scale); } template void fakeQuantWithMinMaxVarsPerChannel_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { int lowIntBound = narrowed ? 1 : 0; // 0 or 1 int upperIntBound = (1 << numBits) - 1; // 2^b - 1 auto channels = input->sizeAt(-1); // last dimension PRAGMA_OMP_PARALLEL_FOR for (auto i = 0; i < channels; i++) { T scale, nudged_min, nudged_max; // nudge min and max first, with scale computing nudge(min->t(i), max->t(i), lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max); // slide using last dimension and process all for given channel for (auto e = 0; e < input->lengthOf(); e += channels) { T val = input->t(e + i); if ( val <= nudged_min) val = nudged_min; else if (val >= nudged_max) val = nudged_max; // quantization itself output->t(e + i) = math::nd4j_floor((val - nudged_min)/scale + T(0.5)) * scale + nudged_min; } } } // //const auto clamped = inputs.cwiseMin(nudged_max).cwiseMax(nudged_min); // const auto clamped_shifted = clamped - nudged_min; // outputs.device(d) = (clamped_shifted / nudged_scale_repl + 0.5f).floor() * // nudged_scale_repl + // nudged_min; // template void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { int lowIntBound = narrowed ? 1 : 0; int upperIntBound = (1 << numBits) - 1; T nudgedMin, nudgedMax, scale; // nudge with given min and max and compute scale and nudged min and max nudge(min->t(0), max->t(0), lowIntBound, upperIntBound, &scale, &nudgedMin, &nudgedMax); // quantization as one auto fakeQuantizationWithMinMax = LAMBDA_T(x, nudgedMin, nudgedMax, scale) { T val = x; // boundign value between nudged min and max if (val < nudgedMin) { val = nudgedMin; } else if (val > nudgedMax) val = nudgedMax; // converse value with scale and shifted with nudged min val -= nudgedMin; return (sd::math::nd4j_floor(val / scale + T(0.5f)) * scale + nudgedMin); }; input->applyLambda(fakeQuantizationWithMinMax, *output); } void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES); } void fakeQuantWithMinMaxVarsPerChannel(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVarsPerChannel_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVars_, (NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES); } } }