/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include "mkldnnUtils.h" #include namespace sd { namespace ops { namespace platforms { ////////////////////////////////////////////////////////////////////////// static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const bool transX, const bool transY, float alpha = 1.f, float beta = 0.f) { // mkl works with following // [M,K] x [K,N] = [M,N] // [bS, M,K] x [bS, K,N] = [bS, M,N] // possible input cases not supported by mkl, however we'll perform permut/reshape procedures in order to fit requirements // [4] x [4] = [1] --> [1,4] x [4,1] = [1,1] // [4] x [4,5] = [5] --> [1,4] x [4,5] = [1,5] // [4,5] x [5] = [4] --> [4,5] x [5,1] = [4,1] // [2,3, 4,5] x [2,3, 5,4] = [2,3, 4,4] --> [6, 4,5] x [6, 5,4] = [6, 4,4] // [2,2,3, 4,5] x [2,2,3, 5,4] = [2,2,3, 4,4] --> [12, 4,5] x [12, 5,4] = [12, 4,4] const auto xRank = x->rankOf(); const auto yRank = y->rankOf(); const auto zRank = z->rankOf(); std::vector permut; // fill permutation vector appropriately if transposition is required if((transX && xRank > 1) || (transY && yRank > 1)) { const int rank = xRank >= yRank ? xRank : yRank; permut.resize(rank); std::iota(std::begin(permut), std::end(permut), 0); permut[rank-2] = rank - 1; permut[rank-1] = rank - 2; } const NDArray* xT = (transX && xRank > 1) ? new NDArray(x->permute(permut)) : x; const NDArray* yT = (transY && yRank > 1) ? new NDArray(y->permute(permut)) : y; const NDArray* xTR = xRank <= 3 ? xT : new NDArray(xT->reshape(xT->ordering(), {xT->lengthOf() / (xT->sizeAt(-2) * xT->sizeAt(-1)), xT->sizeAt(-2), xT->sizeAt(-1)})); const NDArray* yTR = xRank <= 3 ? yT : new NDArray(yT->reshape(yT->ordering(), {yT->lengthOf() / (yT->sizeAt(-2) * yT->sizeAt(-1)), yT->sizeAt(-2), yT->sizeAt(-1)})); NDArray* zR = xRank <= 3 ? z : new NDArray(z->reshape(z->ordering(), {z->lengthOf() / (z->sizeAt(-2) * z->sizeAt(-1)), z->sizeAt(-2), z->sizeAt(-1)})/*, false*/); // [M,K] x [K,N] = [M,N] const int64_t M = (xRank > 1) ? xTR->sizeAt(-2) : 1; const int64_t K = (xRank > 1) ? xTR->sizeAt(-1) : xTR->lengthOf(); const int64_t N = (yRank > 1) ? yTR->sizeAt(-1) : 1; const int64_t bS = (xRank > 2) ? xTR->sizeAt(0) : 1; // [bS, M,K] x [bS, K,N] = [bS, M,N] dnnl::memory::dims xShape = xRank < 3 ? dnnl::memory::dims({M, K}) : dnnl::memory::dims({bS, M, K}); dnnl::memory::dims yShape = xRank < 3 ? dnnl::memory::dims({K, N}) : dnnl::memory::dims({bS, K, N}); dnnl::memory::dims zShape = xRank < 3 ? dnnl::memory::dims({M, N}) : dnnl::memory::dims({bS, M, N}); // x type dnnl::memory::data_type xType; if(x->dataType() == DataType::FLOAT32) xType = dnnl::memory::data_type::f32; else if(x->dataType() == DataType::HALF) xType = dnnl::memory::data_type::f16; else if(x->dataType() == DataType::BFLOAT16) xType = dnnl::memory::data_type::bf16; else if(x->dataType() == DataType::UINT8) xType = dnnl::memory::data_type::u8; else xType = dnnl::memory::data_type::s8; // y type dnnl::memory::data_type yType = xType; if(y->dataType() == DataType::UINT8) yType = dnnl::memory::data_type::u8; else if(y->dataType() == DataType::INT8) yType = dnnl::memory::data_type::s8; // z type dnnl::memory::data_type zType = xType; if(z->dataType() == DataType::FLOAT32) zType = dnnl::memory::data_type::f32; else if(z->dataType() == DataType::INT32) zType = dnnl::memory::data_type::s32; else if(z->dataType() == DataType::UINT8) zType = dnnl::memory::data_type::u8; else if(z->dataType() == DataType::INT8) zType = dnnl::memory::data_type::s8; const auto xFormat = xRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*xTR); const auto yFormat = yRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*yTR); const auto zFormat = zRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*zR); // memory descriptors for arrays dnnl::memory::desc x_mkl_md, x_user_md, y_mkl_md, y_user_md, z_mkl_md, z_user_md; // x x_user_md = x_mkl_md = dnnl::memory::desc(xShape, xType, xFormat); if(xTR->ews() != 1) { x_user_md.data.format_kind = dnnl_blocked; // overrides format x_user_md.data.format_desc.blocking.strides[0] = xRank == 1 ? 1 : xTR->strideAt(0); x_user_md.data.format_desc.blocking.strides[1] = xRank == 1 ? xTR->strideAt(0) : xTR->strideAt(1); if(xRank > 2) x_user_md.data.format_desc.blocking.strides[2] = xTR->strideAt(2); } // y y_user_md = y_mkl_md = dnnl::memory::desc(yShape, yType, yFormat); if(yTR->ews() != 1) { y_user_md.data.format_kind = dnnl_blocked; // overrides format y_user_md.data.format_desc.blocking.strides[0] = yRank == 1 ? 1 : yTR->strideAt(0); y_user_md.data.format_desc.blocking.strides[1] = yRank == 1 ? yTR->strideAt(0) : yTR->strideAt(1); if(yRank > 2) y_user_md.data.format_desc.blocking.strides[2] = yTR->strideAt(2); } // z z_user_md = z_mkl_md = dnnl::memory::desc(zShape, zType, zFormat); if(zR->ews() != 1) { z_user_md.data.format_kind = dnnl_blocked; // overrides format z_user_md.data.format_desc.blocking.strides[0] = zRank == 1 ? 1 : zR->strideAt(0); z_user_md.data.format_desc.blocking.strides[1] = zRank == 1 ? zR->strideAt(0) : zR->strideAt(1); if(zRank > 2) z_user_md.data.format_desc.blocking.strides[2] = zR->strideAt(2); } auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // Create attributes (to handle alpha and beta if necessary) dnnl::primitive_attr attr; // it is empty since we have usual values for alpha (=1) and beta (=0) if (alpha != 1.f) attr.set_output_scales(0, {alpha}); if (beta != 0.f) { dnnl::post_ops po; po.append_sum(beta); attr.set_post_ops(po); } // operation primitive description dnnl::matmul::desc op_desc(x_mkl_md, y_mkl_md, z_mkl_md); dnnl::matmul::primitive_desc op_prim_desc(op_desc, attr, engine); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory buffers and check whether reorder is required // input mkldnnUtils::loadDataToMklStream(*xTR, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); // y mkldnnUtils::loadDataToMklStream(*yTR, engine, stream, y_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); // z auto z_user_mem = mkldnnUtils::loadDataToMklStream(*zR, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]); // run calculations dnnl::matmul(op_prim_desc).execute(stream, args); // reorder outputs if necessary if (op_prim_desc.dst_desc() != z_user_mem.get_desc()) dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem); stream.wait(); if(zR->buffer() != z->buffer()) z->assign(zR); if(zR != z) delete zR; if(xTR != xT) delete xTR; if(xT != x) delete xT; if(yTR != yT) delete yTR; if(yT != y) delete yT; // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(matmul, ENGINE_CPU) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto z = OUTPUT_VARIABLE(0); if(x->isEmpty() || y->isEmpty()) return Status::OK(); int iSize = (int) block.getIArguments()->size(); int transX = iSize > 0 ? INT_ARG(0) : 0; int transY = iSize > 1 ? INT_ARG(1) : 0; const int transZ = iSize > 2 ? INT_ARG(2) : 0; // optional use alpha nad beta iSize = (int)block.getTArguments()->size(); float alpha = iSize > 0 ? T_ARG(0) : 1.0; float beta = iSize > 1 ? T_ARG(1) : 0.0; const int xRank = x->rankOf(); const int yRank = y->rankOf(); const int zRank = z->rankOf(); if (transZ) { x = INPUT_VARIABLE(1); y = INPUT_VARIABLE(0); bool temp = transX; transX = !transY; transY = !temp; } const int xLastDim = transX ? -2 : -1; const int yLastDim = transY ? -2 : -1; const int xLastButOneDim = transX ? -1 : -2; const int yLastButOneDim = transY ? -1 : -2; // ******* input validation ******* // REQUIRE_TRUE(xRank > 0 && yRank > 0, 0, "MATMUL MKLDNN OP: input arrays must have rank bigger than 0 (should not be scalars), but got instead: x rank = %i, y rank = %i !", xRank, yRank); if (xRank == 1 && yRank == 1) { // dot case, output is scalar (or vector with length = 1) REQUIRE_TRUE(x->lengthOf() == y->lengthOf(), 0,"MATMUL MKLDNN OP: since input arrays are vectors they must have the same length, but got x length = %i, y length = %i !",x->lengthOf(), y->lengthOf()); } else if (xRank == 1 && yRank == 2) { // vector x matrix, i.e. [4] x [4,5] = [5], output is vector REQUIRE_TRUE(x->lengthOf() == y->sizeAt(yLastButOneDim), 0, "MATMUL MKLDNN OP: input arrays have inconsistent shapes for vector-matrix product: x %s, y %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str()); } else if (xRank == 2 && yRank == 1) { // matrix x vector , i.e. [4,5] x [5] = [4], output is vector REQUIRE_TRUE(x->sizeAt(xLastDim) == y->lengthOf(), 0, "MATMUL MKLDNN OP: input arrays have inconsistent shapes for matrix-vector product: x %s, y %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str()); } else { REQUIRE_TRUE(xRank == yRank && yRank == zRank, 0, "MATMUL MKLDNN OP: input and output arrays must have the same rank, but got instead: x rank = %i, y rank = %i, z rank = %i !", xRank, yRank, zRank); REQUIRE_TRUE(x->sizeAt(xLastDim) == y->sizeAt(yLastButOneDim) && x->sizeAt(xLastButOneDim) == z->sizeAt(-2) && y->sizeAt(yLastDim) == z->sizeAt(-1), 0, "MATMUL MKLDNN OP: input/output arrays have inconsistent shapes for matrix product: x %s, y %s, z %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str(), ShapeUtils::shapeAsString(z).c_str()); if (xRank > 2) // outer dims must be the same for (int i = 0; i < xRank - 2; ++i) REQUIRE_TRUE(x->sizeAt(i) == y->sizeAt(i) && y->sizeAt(i) == z->sizeAt(i), 0, "MATMUL MKLDNN OP: input/output arrays have inconsistent shapes for matrix product: x %s, y %s, z %s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str(), ShapeUtils::shapeAsString(z).c_str()); } // ******* end of input validation ******* // matmulMKLDNN(x, y, z, transX, transY, alpha, beta); return Status::OK(); } ////////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(matmul, ENGINE_CPU) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto z = OUTPUT_VARIABLE(0); const auto xType = x->dataType(); const auto yType = y->dataType(); const auto zType = z->dataType(); float alpha = block.numT() > 0 ? T_ARG(0) : 1.0f; float beta = block.numT() > 1 ? T_ARG(1) : 0.0f; // we're skipping if result order is F or arrays are not continuous bool skip2D = z->rankOf() == 2 && (z->ordering() == 'f' || x->ews() != 1 || y->ews() != 1 || z->ews() != 1); // we're skipping 3D cases if they are not C continuoys bool skip3D = z->rankOf() == 3 && (x->ordering() == 'f' || y->ordering() == 'f' || z->ordering() == 'f' || x->ews() != 1 || y->ews() != 1 || z->ews() != 1); return !skip2D && !skip3D && block.isUseMKLDNN() && x->rankOf() < 3 && ( (xType==DataType::FLOAT32 && yType==DataType::FLOAT32 && zType==DataType::FLOAT32) || (xType==DataType::HALF && yType==DataType::HALF && zType==DataType::FLOAT32) || (xType==DataType::BFLOAT16 && yType==DataType::BFLOAT16 && zType==DataType::BFLOAT16) || ((xType==DataType::UINT8 || xType==DataType::INT8) && (yType==DataType::UINT8 || yType==DataType::INT8) && (zType==DataType::UINT8 || zType==DataType::INT8 || zType==DataType::INT32 || zType==DataType::FLOAT32)) ); } } } }