/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #if NOT_EXCLUDED(OP_norm) #include #include namespace sd { namespace ops { REDUCTION_OP_IMPL(norm, 1, 1, false, 1, -2) { auto input = INPUT_VARIABLE(0); NDArray *output = OUTPUT_VARIABLE(0); auto mode = (int) T_ARG(0); std::vector dims = *block.getIArguments(); bool overwrite = false; if (block.width() == 1) { output = OUTPUT_VARIABLE(0); } else { auto axisVector = INPUT_VARIABLE(1); dims.resize(axisVector->lengthOf()); helpers::adjustAxis(input->rankOf(), axisVector, dims); axisVector->printIndexedBuffer("AXIS"); auto shape = ShapeUtils::evalReduceShapeInfo(input->ordering(), dims, *input, false, false); if (!shape::equalsStrict(shape, output->shapeInfo())) { output = new NDArray(shape, false, block.launchContext()); overwrite = true; } } output->printShapeInfo("Output Shape Info"); switch(mode) { case 0: { REQUIRE_TRUE(dims.size() == 2 || (input->rankOf() == 2 && dims.size() == 0), 0, "Norm: Frobenius is defined for 2D matrices or TADS only"); // fro input->reduceAlongDimension(reduce::NormFrobenius, *output, dims, false, output->rankOf() == 2); } break; case 1: { // euclidean if ((input->rankOf() == 2 && dims.size() == 0) || dims.size() == 2) { input->reduceAlongDimension(reduce::NormFrobenius, *output, dims, false, output->rankOf() == 2); } else { input->reduceAlongDimension(reduce::Norm2, *output, dims, false, output->rankOf() == 2); } } break; case 2: { // 1 input->reduceAlongDimension(reduce::Norm1, *output, dims, false, output->rankOf() == 2); } break; case 3: { // 2 input->reduceAlongDimension(reduce::Norm2, *output, dims, false, output->rankOf() == 2); } break; case 4: { // inf-norm input->reduceAlongDimension(reduce::NormMax, *output, dims, false, output->rankOf() == 2); } break; default: { // p-norm REQUIRE_TRUE(block.getIArguments()->size() > 1, 0, "P-Norm reductions requires 2 TArguments, but only 1 was provided"); // FIXME: p is required here //T p = T_ARG(1); input->reduceAlongDimension(reduce::NormP, *output, dims, false, output->rankOf() == 2); } } if (overwrite) { OVERWRITE_RESULT(output); } return ND4J_STATUS_OK; }; DECLARE_TYPES(norm) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } } #endif