/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author raver119@gmail.com, created on 29/10/17. // @author Yurii Shyrma (iuriish@yahoo.com) // #include #if NOT_EXCLUDED(OP_batchnorm) #include #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(batchnorm, 3, 1, false, 1, 2) { auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray* gamma = nullptr; NDArray* beta = nullptr; auto output = OUTPUT_VARIABLE(0); const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const double epsilon = T_ARG(0); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + (int)applyScale); const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const uint numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank); // evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes // for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5} std::vector expShape; if(numOfAxes == 1) expShape.push_back(input->sizeAt(axes[0])); else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3} expShape = std::vector(inRank, 1); for(uint i = 0; i < numOfAxes; ++i) expShape[axes[i]] = input->sizeAt(axes[i]); } REQUIRE_TRUE(mean->isSameShape(expShape) , 0, "BATCHNORM op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str()); if(gamma) REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str()); if(beta) REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same for(unsigned long i = 1; i < block.width(); ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM op: types of all input arrays should be the same !"); nd4j_debug("MKL-DNN is not used for batchnorm!\n", 0); // formula: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta // auto v = input->varianceAlongDimension(variance::SummaryStatsVariance, false, ShapeUtils::evalDimsToExclude(input->rankOf(), axes)); // auto m = input->reduceAlongDimension(sd::reduce::Mean, ShapeUtils::evalDimsToExclude(input->rankOf(), axes)); helpers::batchnorm(input, mean, variance, gamma, beta, output, axes, epsilon); // NDArray stdInv = *v + epsilon; // stdInv.applyTransform(transform::Reciprocal); // 1 / (variance + epsilon) // stdInv.applyTransform(transform::Sqrt); // 1 / (variance + epsilon)^0.5 // if(applyScale) // stdInv *= *gamma; // // empty array with same shape as input // input->applyBroadcast(sd::broadcast::Subtract, axes, m, output); // output->applyBroadcast(sd::broadcast::Multiply, axes, &stdInv); // if(applyOffset) // output->applyBroadcast(sd::broadcast::Add, axes, beta); // delete v; // delete m; return Status::OK(); } DECLARE_TYPES(batchnorm) { getOpDescriptor()->setAllowedInputTypes({ALL_FLOATS})->setSameMode(true); } DECLARE_SHAPE_FN(batchnorm) { auto inShapeInfo = inputShape->at(0); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo)); auto outShapeInfo = ShapeBuilders::copyShapeInfoAndType(inShapeInfo, outType, false, block.getWorkspace()); // output shape is identical to input shape return SHAPELIST(CONSTANT(outShapeInfo)); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(batchnorm_bp, 4, 3, false, 1, 2) { NDArray* input = INPUT_VARIABLE(0); NDArray* mean = INPUT_VARIABLE(1); NDArray* variance = INPUT_VARIABLE(2); NDArray* gamma = nullptr; NDArray* beta = nullptr; NDArray* dLdO = INPUT_VARIABLE(block.width() - 1); // next epsilon NDArray* dLdI = OUTPUT_VARIABLE(0); NDArray* dLdM = OUTPUT_VARIABLE(1); NDArray* dLdV = OUTPUT_VARIABLE(2); NDArray* dLdG = nullptr; NDArray* dLdB = nullptr; const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const float epsilon = T_ARG(0); if(applyScale) { gamma = INPUT_VARIABLE(3); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(3 + (int)applyScale); dLdB = OUTPUT_VARIABLE(3 + (int)applyScale); } const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const uint numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM_BP op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank); // evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes // for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5} std::vector expShape; if(numOfAxes == 1) expShape.push_back(input->sizeAt(axes[0])); else { // get, for example, something like {1, inputDim1, 1, inputDim3, 1} if axes = {1, 3} expShape = std::vector(inRank, 1); for(uint i = 0; i < numOfAxes; ++i) expShape[axes[i]] = input->sizeAt(axes[i]); } REQUIRE_TRUE(mean->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of mean array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of variance array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(variance).c_str()); if(gamma) REQUIRE_TRUE(gamma->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of gamma array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(gamma).c_str()); if(beta) REQUIRE_TRUE(beta->isSameShape(expShape), 0, "BATCHNORM_BP op: wrong shape of beta array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expShape).c_str(), ShapeUtils::shapeAsString(beta).c_str()); REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP op: wrong shape of output gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str()); // types of all input arrays should be the same (except dLdO) for(unsigned long i = 1; i < block.width() - 2; ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP op: types of arrays (input, mean, variance, gamma, beta) should be the same !"); // ***** calculations ***** // // notations: // f = g * (gamma * ((x - m) / (v + eps)^0.5) + beta) -> means dLdO * ff_output, g = dLdO // stdInv = 1 / (v + eps)^0.5 // N - batch size (product of spatial dimensions) // derivatives: // dLdI = dfdx + dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx) // dfdx = gamma*stdInv*g; // dfdm = -gamma*stdInv*g_sum; // dmdx = 1/N; // dvdx = 2 * (x - m) / N // dvdm = -2 * [(x - m)]_sum / N // dfdv = -0.5 * [g*(x - m)]_sum * stdInv^3, drop gamma here for calc convenience // finally: // dLdI = gamma * ( stdInv * (g - g_sum/N) + (2/N) * dfdv * (dvdm/2 + (x - m)) ) // dLdG = (g * (x - m))_sum * stdInv // dLdB = g_sum // variance = input->varianceAlongDimension(variance::SummaryStatsVariance, false, ShapeUtils::evalDimsToExclude(input->rankOf(), axes)); // mean = input->reduceAlongDimension(sd::reduce::Mean, ShapeUtils::evalDimsToExclude(input->rankOf(), axes)); const auto excludedAxes = ShapeUtils::evalDimsToExclude(inRank, axes); const bool keepUnitiesInShape = inRank == mean->rankOf(); // inverse batch size 1/N const float Ninv = 1.f * shape::tadLength(input->shapeInfo(), axes.data(), axes.size()) / input->lengthOf(); // input - mean NDArray xMinusMean(input); // empty array with same shape as input input->applyBroadcast(sd::broadcast::Subtract, axes, *mean, xMinusMean); // stdInv NDArray stdInv = *variance + epsilon; stdInv.applyTransform(transform::Reciprocal, stdInv); // 1 / (variance + epsilon) stdInv.applyTransform(transform::Sqrt, stdInv); // 1 / (variance + epsilon)^0.5 // dvdm (use dLdM as storage for dvdm) xMinusMean.reduceAlongDimension(sd::reduce::Sum, *dLdM, excludedAxes, keepUnitiesInShape); *dLdM *= -Ninv; // g_sum auto gSum = dLdO->reduceAlongDimension(sd::reduce::Sum, excludedAxes, keepUnitiesInShape); // dLdB if(applyOffset) dLdB->assign(gSum); // stdInv * (g - g_sum/N) (use dLdI as storage for this expression) gSum *= Ninv; dLdO->applyBroadcast(sd::broadcast::Subtract, axes, gSum, *dLdI); dLdI->applyBroadcast(sd::broadcast::Multiply, axes, stdInv, *dLdI); // dLdV <- [g*(x - m)]_sum (xMinusMean * *dLdO).reduceAlongDimension(sd::reduce::Sum, *dLdV, excludedAxes, keepUnitiesInShape); // dLdG *dLdV *= stdInv; if(applyScale) dLdG->assign(dLdV); // (2 / N) * dfdv (use dLdV as storage for dfdv) *dLdV *= stdInv*stdInv; // dLdV*stdInv * stdInv^2 *dLdV *= -Ninv; // -0.5f * (2 / N); // dfdv * (dvdm + (x - m)) (use xMinusMean as storage for this expression) xMinusMean.applyBroadcast(sd::broadcast::Add, axes, *dLdM, xMinusMean); xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, *dLdV, xMinusMean); // dLdI *dLdI += xMinusMean; if(applyScale) dLdI->applyBroadcast(sd::broadcast::Multiply, axes, *gamma, *dLdI); *dLdM = 0; // put zeros so far *dLdV = 0; // put zeros so far // java code // NDArray std = *variance + epsilon; // std.applyTransform(transform::Reciprocal); // 1 / (variance + epsilon) // std.applyTransform(transform::Sqrt); // 1 / (variance + epsilon)^0.5 // NDArray xMu(input); // input->applyBroadcast(sd::broadcast::Subtract, axes, mean, &xMu); // NDArray xHat(input); // xMu.applyBroadcast(sd::broadcast::Multiply, axes, &std, &xHat); // NDArray dxhat(input); // dLdO->applyBroadcast(sd::broadcast::Multiply, axes, gamma, &dxhat); // NDArray temp = dxhat*xMu; // temp.reduceAlongDimension(reduce::Sum, dLdV, excludedAxes, keepUnitiesInShape); // *dLdV *= -0.5f * std*std*std; // NDArray* dxmu1 = dxhat.reduceAlongDimension(reduce::Sum, excludedAxes, keepUnitiesInShape); // *dxmu1 *= -std; // NDArray* dxmu2 = xMu.reduceAlongDimension(reduce::Sum, excludedAxes, keepUnitiesInShape); // *dxmu2 *= *dLdV * (-2.f/N); // NDArray dLdmu = *dxmu1 + *dxmu2; // dLdmu *= (1.f /N); // *dLdV *= (2.f/N); // dxhat.applyBroadcast(sd::broadcast::Multiply, axes, &std); // xMu.applyBroadcast(sd::broadcast::Multiply, axes, dLdV); // dxhat += xMu; // dxhat.applyBroadcast(sd::broadcast::Add, axes, &dLdmu, dLdI); // delete dxmu1; // delete dxmu2; // xHat *= *dLdO; // xHat.reduceAlongDimension(reduce::Sum, dLdG, excludedAxes, keepUnitiesInShape); return Status::OK(); } DECLARE_TYPES(batchnorm_bp) { getOpDescriptor() ->setAllowedInputTypes(0, sd::DataType::ANY) ->setAllowedInputTypes(1, sd::DataType::ANY) ->setAllowedInputTypes(2, sd::DataType::ANY) ->setAllowedInputTypes(3, {ALL_FLOATS}) ->setAllowedInputTypes(4, sd::DataType::ANY) ->setAllowedInputTypes(5, sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(batchnorm_bp) { Nd4jLong const* inShapeInfo = inputShape->at(0); Nd4jLong const* meanShapeInfo = inputShape->at(1); const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo)); auto shapes = SHAPELIST(); // dLdI shapeInfo shapes->push_back(ConstantShapeHelper::getInstance().createShapeInfo(outType, inShapeInfo)); // dLdM shapeInfo shapes->push_back(ConstantShapeHelper::getInstance().createShapeInfo(outType, meanShapeInfo)); // dLdV shapeInfo (same as dLdM) shapes->push_back(shapes->at(shapes->size()-1)); // dLdG shapeInfo (same as dLdM) if(applyScale) shapes->push_back(shapes->at(shapes->size()-1)); // dLdB shapeInfo (same as dLdM) if(applyOffset) shapes->push_back(shapes->at(shapes->size()-1)); return shapes; } } } #endif