/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #if NOT_EXCLUDED(OP_where) #include #include #include namespace sd { namespace ops { CUSTOM_OP_IMPL(Where, 1, 1, false, 0, 0) { auto condition = INPUT_VARIABLE(0); auto z = OUTPUT_VARIABLE(0); if (z->isEmpty()) return Status::OK(); if (block.width() == 3) { auto x = INPUT_VARIABLE(1); auto y = INPUT_VARIABLE(2); REQUIRE_TRUE(x->isSameShape(y), 0, "X and Y must have equal shapes"); // if cond matches x/y shape - we have per-element mask if (condition->isSameShape(x)) { // FIXME: for perf it might be better to issue memcpy here, and fill only mismatched values from either X or Y for (int e = 0; e < condition->lengthOf(); e++) { if (y->isR()) { auto r = !condition->e(e) ? y->e(e) : x->e(e); z->p(e, r); } else { auto r = !condition->e(e) ? y->e(e) : x->e(e); z->p(e, r); } } } else { REQUIRE_TRUE(condition->lengthOf() == x->sizeAt(0), 0, "Condition length should be equal to the dim0 of x/y to act as TAD-mask, but got %d instead", condition->lengthOf()); auto dims = ShapeUtils::evalDimsToExclude(x->rankOf(), {0}); auto tadsX = x->allTensorsAlongDimension(dims); auto tadsY = y->allTensorsAlongDimension(dims); auto tadsZ = z->allTensorsAlongDimension(dims); for (int e = 0; e < tadsX.size(); e++) { if (!condition->e(e)) { tadsZ.at(e)->assign(tadsY.at(e)); } else { tadsZ.at(e)->assign(tadsX.at(e)); } } } } else { // in this case we return 2D matrix, which basically contains coordinates fo true REQUIRE_TRUE(block.width() == 1, 0, "Where op takes either 1 or 3 operands, But got %d operands instead", block.width()); auto output = OUTPUT_VARIABLE(0); int width = condition->rankOf(); if (z->isEmpty()) return ND4J_STATUS_OK; std::vector dims = ShapeUtils::evalDimsToExclude(width, {0}); helpers::_where(block.launchContext(), *condition, *output, block.workspace()); } return Status::OK(); } DECLARE_SHAPE_FN(Where) { if (block.width() == 3) { auto inShape = inputShape->at(1); Nd4jLong *newshape; COPY_SHAPE(inShape, newshape); return SHAPELIST(CONSTANT(newshape)); } else { // FIXME: we can't estimate result here in this case // output shape is the 2D tensor num_true x rankOf (inShape) auto condition = INPUT_VARIABLE(0); auto inShape = inputShape->at(0); Nd4jLong numOfTrue = 0; //condition->reduceNumber(reduce::CountNonZero, nullptr).e(0); for (Nd4jLong i = 0; i < condition->lengthOf(); i++) if (condition->e(i)) numOfTrue++; Nd4jLong const* theNewShape; if (numOfTrue > 0) { Nd4jLong* newShape; ALLOCATE(newShape, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong); newShape[0] = 2; newShape[1] = numOfTrue; newShape[2] = shape::rank(inShape); newShape[3] = 1; newShape[4] = 1; newShape[5] = 0; newShape[6] = 1; newShape[7] = 99; ShapeUtils::updateStridesAndType(newShape, sd::DataType::INT64, 'c'); theNewShape = CONSTANT(newShape); } else { theNewShape = ConstantShapeHelper::getInstance().emptyShapeInfo(sd::DataType::INT64); } return SHAPELIST(theNewShape); } } DECLARE_TYPES(Where) { getOpDescriptor() ->setAllowedInputTypes(0, DataType::ANY) // bool ->setAllowedInputTypes(1, DataType::ANY) ->setAllowedInputTypes(2, DataType::ANY) ->setAllowedOutputTypes(0, {ALL_INTS, ALL_FLOATS}); } } } #endif