/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include #include #include #include #include #include #include #include #include #include using namespace simdOps; //////////////////////////////////////////////////////////////////////// template __global__ void simpleReduce(const void *x, const Nd4jLong *outerXTadShapeInfo, const Nd4jLong *innerXTadShapeInfo, void *extraParams, void *vreductionBuffer, void *z, const Nd4jLong *zShapeInfo) { functions::reduce::ReduceFloatFunction::template transformCudaXD(x, outerXTadShapeInfo, innerXTadShapeInfo, extraParams, vreductionBuffer, z, zShapeInfo); } //////////////////////////////////////////////////////////////////////// template __global__ void simpleScalar(const void *x, const Nd4jLong *xShapeInfo, void *extraParams, void *z, const Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, const Nd4jLong *tadOnlyShapeInfo) { functions::reduce::ReduceFloatFunction::template execScalarCuda(x, xShapeInfo, extraParams, z, zShapeInfo, reductionBuffer, tadOnlyShapeInfo); } namespace functions { namespace reduce { //////////////////////////////////////////////////////////////////////// template template __device__ void ReduceFloatFunction::aggregatePartials(void *vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) { // start the shared memory loop on the next power of 2 less // than the block size. If block size is not a power of 2, // accumulate the intermediate sums in the remainder range. auto sPartials = reinterpret_cast(vsPartials); auto extraParams = reinterpret_cast(vextraParams); Nd4jLong floorPow2 = numItems; if (floorPow2 & (floorPow2 - 1)) { while (floorPow2 & (floorPow2 - 1)) floorPow2 &= floorPow2 - 1; if (tid >= floorPow2) sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams); __syncthreads(); } for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) { if (tid < activeThreads && tid + activeThreads < numItems) sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams); __syncthreads(); } } //////////////////////////////////////////////////////////////////////// template template __device__ void ReduceFloatFunction::transformCudaXD(const void *vx, const Nd4jLong *outerXTadShapeInfo, const Nd4jLong *innerXTadShapeInfo, void *vextraParams, void *vreductionBuffer, void *vz, const Nd4jLong *zShapeInfo) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); auto extraParams = reinterpret_cast(vextraParams); //shared memory space for storing intermediate results __shared__ Z sPartials[CUDA_BLOCK_SIZE]; __shared__ int tadLen, numTads; __shared__ bool sameOffsets; if (threadIdx.x == 0) { sameOffsets = shape::haveSameShapeAndStrides(zShapeInfo, outerXTadShapeInfo); tadLen = shape::length(innerXTadShapeInfo); numTads = shape::length(outerXTadShapeInfo); } __syncthreads(); int coords[MAX_RANK]; for (int r = blockIdx.x; r < numTads; r += gridDim.x) { shape::index2coords(r, outerXTadShapeInfo, coords); const auto outerOffset = shape::getOffset(outerXTadShapeInfo, coords); const auto zOffset = sameOffsets ? outerOffset : shape::getOffset(zShapeInfo, coords); const X* xTad = x + outerOffset; sPartials[threadIdx.x] = OpType::startingValue(xTad); for (int i = threadIdx.x; i < tadLen; i += blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(xTad[shape::getIndexOffset(i, innerXTadShapeInfo)], extraParams), extraParams); __syncthreads(); // aggregate. do NOT reduce for elements > tadLen aggregatePartials(sPartials, threadIdx.x, sd::math::nd4j_min(blockDim.x, tadLen), extraParams); __syncthreads(); if (threadIdx.x == 0) z[zOffset] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraParams); } } //////////////////////////////////////////////////////////////////////// template template __device__ void ReduceFloatFunction::execScalarCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vextraParams, void *vz, const Nd4jLong *zShapeInfo, void *vreductionBuffer, const Nd4jLong *tadOnlyShapeInfo) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); auto extraParams = reinterpret_cast(vextraParams); auto reductionBuffer = reinterpret_cast(vreductionBuffer); auto tid = blockDim.x * blockIdx.x + threadIdx.x; //shared memory space for storing intermediate results __shared__ Z sPartials[CUDA_BLOCK_SIZE]; __shared__ Nd4jLong xEws; __shared__ Nd4jLong len; if(threadIdx.x == 0) { xEws = shape::elementWiseStride(xShapeInfo); len = shape::length(xShapeInfo); } __syncthreads(); sPartials[threadIdx.x] = OpType::startingValue(x); if (xEws > 0) for (int i = tid; i < len; i += (blockDim.x * gridDim.x)) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[i * xEws], extraParams), extraParams); else for (int i = tid; i < len; i += blockDim.x * gridDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::op(x[shape::getIndexOffset(i, xShapeInfo)], extraParams), extraParams); __syncthreads(); aggregatePartials(sPartials, threadIdx.x, sd::math::nd4j_min(blockDim.x, len), extraParams); __syncthreads(); if (gridDim.x > 1) { unsigned int *tc = (unsigned int *)reductionBuffer; __shared__ bool amLast; tid = threadIdx.x; if (threadIdx.x == 0) reductionBuffer[blockIdx.x] = sPartials[0];//this->postProcess(sPartials[0],len,extraParams); __threadfence(); __syncthreads(); if (threadIdx.x == 0) { unsigned int ticket = atomicInc(&tc[16384], gridDim.x); amLast = (ticket == gridDim.x - 1); } __syncthreads(); if (amLast) { tc[16384] = 0; sPartials[threadIdx.x] = OpType::startingValue(x); for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], reductionBuffer[i], extraParams); __syncthreads(); aggregatePartials(sPartials, threadIdx.x, sd::math::nd4j_min(gridDim.x, blockDim.x), extraParams); __syncthreads(); if (threadIdx.x == 0) { z[0] = OpType::postProcess(sPartials[0], len, extraParams); } } } else { if (threadIdx.x == 0) { unsigned int *tc = (unsigned *)reductionBuffer; tc[16384] = 0; z[0] = OpType::postProcess(sPartials[0], len, extraParams); } } } //////////////////////////////////////////////////////////////////////// template template __host__ void ReduceFloatFunction::intermediateXD(dim3 launchDims, cudaStream_t *stream, const void *x, const Nd4jLong *dXShapeInfo, const Nd4jLong *hXShapeInfo, void *extraParams, void *vreductionBuffer, void *z, const Nd4jLong *dZShapeInfo, const Nd4jLong *hZShapeInfo, const int* dims) { if(shape::isEmpty(hXShapeInfo)) { if(shape::isEmpty(hZShapeInfo)) return; const auto startingVal = std::is_same>::value ? sd::DataTypeUtils::nanOrZero() : static_cast(OpType::startingValue(reinterpret_cast(x))); auto res = cudaMemcpyAsync(sd::LaunchContext::defaultContext()->getScalarPointer(), &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream); if (res != 0) throw sd::cuda_exception::build("ReduceFloatFunction::intermediateXD: failed to copy temporary scalar", res); auto ptr = sd::LaunchContext::defaultContext()->getScalarPointer(); // scalar assign functions::scalar::ScalarTransform::executeCudaShaped(launchDims, stream, 14, z, dZShapeInfo, hZShapeInfo, z, dZShapeInfo, hZShapeInfo, ptr, nullptr); } else { const int zRank = shape::rank(hZShapeInfo); const int tadRank = shape::rank(hXShapeInfo) - zRank; auto outerPack = sd::ConstantShapeHelper::getInstance().createSubArrShapeInfo(hXShapeInfo, dims, zRank); auto innerPack = sd::ConstantShapeHelper::getInstance().createSubArrShapeInfo(hXShapeInfo, dims+zRank, tadRank); simpleReduce<<>>(x, reinterpret_cast(outerPack.special()), reinterpret_cast(innerPack.special()), extraParams, vreductionBuffer, z, dZShapeInfo); } } //////////////////////////////////////////////////////////////////////// template template __host__ void ReduceFloatFunction::intermediateScalar(dim3 launchDims, cudaStream_t *stream, const void *x, const Nd4jLong *xShapeInfo, const Nd4jLong *hXShapeInfo, void *extraParams, void *z, const Nd4jLong *dZShapeInfo, const Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, const Nd4jLong *tadOnlyShapeInfo) { if (shape::isEmpty(hXShapeInfo)) { if (shape::isEmpty(hZShapeInfo)) return; const auto startingVal = std::is_same>::value ? sd::DataTypeUtils::nanOrZero() : static_cast(OpType::startingValue(reinterpret_cast(x))); auto res = cudaMemcpyAsync(z, &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream); if (res != 0) throw sd::cuda_exception::build("ReduceFloatFunction::intermediateScalar: failed to copy resulting scalar", res); } else { simpleScalar <<>>(x, xShapeInfo, extraParams, z, dZShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo); } } //////////////////////////////////////////////////////////////////////// template _CUDA_H void ReduceFloatFunction::execReduceScalar(dim3 launchDims, cudaStream_t *stream, const int opNum, const void *x, const Nd4jLong *xShapeInfo, const Nd4jLong *hXShapeInfo, void *extraParams, void *z, const Nd4jLong *dZShapeInfo, const Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionBuffer, const Nd4jLong *tadOnlyShapeInfo) { DISPATCH_BY_OPNUM_TT(intermediateScalar, PARAMS(launchDims, stream, x, xShapeInfo, hXShapeInfo, extraParams, z, dZShapeInfo, hZShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo), OPS_A(REDUCE_FLOAT_OPS)); sd::DebugHelper::checkErrorCode(stream, "execReduceScalarFloat(...) failed"); } //////////////////////////////////////////////////////////////////////// template _CUDA_H void ReduceFloatFunction::execReduceXD(dim3 launchDims, cudaStream_t *stream, const int opNum, const void *x, const Nd4jLong *dXShapeInfo, const Nd4jLong *hXShapeInfo, void *extraParams, void *vreductionBuffer, void *z, const Nd4jLong *dZShapeInfo, const Nd4jLong *hZShapeInfo, const int *dims) { if(shape::length(hZShapeInfo) == 1) { ReduceFloatFunction::execReduceScalar(launchDims, stream, opNum, x, dXShapeInfo, hXShapeInfo, extraParams, z, dZShapeInfo, hZShapeInfo, nullptr, 0, vreductionBuffer, nullptr); } else { DISPATCH_BY_OPNUM_TT(intermediateXD, PARAMS(launchDims, stream, x, dXShapeInfo, hXShapeInfo, extraParams, vreductionBuffer, z, dZShapeInfo, hZShapeInfo, dims), OPS_A(REDUCE_FLOAT_OPS)); } DEBUG_KERNEL(stream, opNum); } //////////////////////////////////////////////////////////////////////// template __device__ void initializeShared(X *extraParams, X **sPartials, int sMemSize) { int sPartialsLength = sMemSize / sizeof(X); X *sPartialsDeref = (X *) *sPartials; for (int i = 0; i < sPartialsLength; i++) sPartialsDeref[i] = extraParams[0]; } //BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT ReduceFloatFunction, , LIBND4J_TYPES, FLOAT_TYPES); } }