/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include "testlayers.h" #include #include #include #include #include #ifdef HAVE_CUDNN #include #endif using namespace nd4j; class CuDnnTests : public testing::Test { public: }; static void printer(std::initializer_list helpers) { for (auto v:helpers) { nd4j_printf("Initialized [%s]\n", v->name().c_str()); } } TEST_F(CuDnnTests, helpers_includer) { // we need this block, to make sure all helpers are still available within binary, and not optimized out by linker #ifdef HAVE_CUDNN nd4j::ops::platforms::PLATFORM_conv2d_ENGINE_CUDA conv2d; nd4j::ops::platforms::PLATFORM_conv2d_bp_ENGINE_CUDA conv2d_bp; nd4j::ops::platforms::PLATFORM_conv3dnew_ENGINE_CUDA conv3dnew; nd4j::ops::platforms::PLATFORM_conv3dnew_bp_ENGINE_CUDA conv3dnew_bp; nd4j::ops::platforms::PLATFORM_depthwise_conv2d_ENGINE_CUDA depthwise_conv2d; nd4j::ops::platforms::PLATFORM_depthwise_conv2d_bp_ENGINE_CUDA depthwise_conv2d_bp; nd4j::ops::platforms::PLATFORM_batchnorm_ENGINE_CUDA batchnorm; printer({&conv2d}); printer({&conv2d_bp}); printer({&conv3dnew}); printer({&conv3dnew_bp}); printer({&depthwise_conv2d}); printer({&depthwise_conv2d_bp}); printer({&batchnorm}); #endif } TEST_F(CuDnnTests, mixed_helpers_test_1) { #if defined(HAVE_CUDNN) && defined (HAVE_MKLDNN) nd4j_printf("Mixed platforms test\n", ""); int bS=2, iH=4,iW=3, iC=4,oC=3, kH=3,kW=2, sH=1,sW=1, pH=0,pW=0, dH=1,dW=1; int oH=2,oW=2; int paddingMode = 0; // 1-SAME, 0-VALID; int dataFormat = 0; // 1-NHWC, 0-NCHW auto input = NDArrayFactory::create('c', {bS, iC, iH, iW}); auto weights = NDArrayFactory::create('c', {oC, iC, kH, kW}); auto bias = NDArrayFactory::create('c', {oC}, {1,2,3}); auto expOutput = NDArrayFactory::create('c', {bS, oC, oH, oW}, {61.f, 61.f, 61.f, 61.f, 177.2f, 177.2f, 177.2f, 177.2f, 293.4f, 293.4f, 293.4f, 293.4f, 61.f, 61.f, 61.f, 61.f, 177.2f, 177.2f, 177.2f, 177.2f, 293.4f, 293.4f, 293.4f, 293.4f}); auto zCUDA = expOutput.like(); auto zMKL = expOutput.like(); input = 2.; weights.linspace(0.1, 0.1); weights.permutei({2,3,1,0}); input.syncToHost(); weights.syncToHost(); bias.syncToHost(); nd4j::ops::conv2d op; // cuDNN part Context cuda(1); cuda.setTargetEngine(samediff::Engine::ENGINE_CUDA); cuda.setInputArray(0, &input); cuda.setInputArray(1, &weights); cuda.setInputArray(2, &bias); cuda.setOutputArray(0, &zCUDA); cuda.setIArguments({kH,kW, sH,sW, pH,pW, dH,dW, paddingMode, dataFormat}); auto statusCUDA = op.execute(&cuda); ASSERT_EQ(Status::OK(), statusCUDA); ASSERT_EQ(expOutput, zCUDA); // MKL-DNN part Context mkl(1); mkl.setTargetEngine(samediff::Engine::ENGINE_CPU); mkl.setInputArray(0, &input); mkl.setInputArray(1, &weights); mkl.setInputArray(2, &bias); mkl.setOutputArray(0, &zMKL); mkl.setIArguments({kH,kW, sH,sW, pH,pW, dH,dW, paddingMode, dataFormat}); auto statusMKL = op.execute(&mkl); zMKL.tickWriteHost(); ASSERT_EQ(Status::OK(), statusMKL); ASSERT_EQ(expOutput, zMKL); #endif }