/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author saudet // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include "mkldnnUtils.h" #include #include namespace sd { namespace ops { namespace platforms { ////////////////////////////////////////////////////////////////////////// static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* weights, NDArray* z, const float epsilon, const bool isNCHW) { // unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x // x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc // mean -> 1D [c] // variance -> 1D [c] // weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta // z(output) - same shape as x const int xRank = x->rankOf(); // input type dnnl::memory::data_type type = dnnl::memory::data_type::f32; // indicate whether gamma or/and beta are given auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch if (weights != nullptr) flags |= dnnl::normalization_flags::use_scale_shift; dnnl::memory::dims dims; dnnl::memory::format_tag format; const int indHW = isNCHW ? 2 : 1; const int bS = x->sizeAt(0); const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1); int iD, iH, iW; if(xRank == 2) { dims = {bS, iC}; format = dnnl::memory::format_tag::nc; } else if(xRank == 4) { iH = x->sizeAt(indHW); iW = x->sizeAt(indHW + 1); dims = {bS, iC, iH, iW}; format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc; } else { // xRank = 5 iD = x->sizeAt(indHW); iH = x->sizeAt(indHW + 1); iW = x->sizeAt(indHW + 2); dims = {bS, iC, iD, iH, iW}; format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc; } // memory descriptors for arrays // x dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format); mkldnnUtils::setBlockStrides(*x, x_user_md); // z, output dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any); dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, format); mkldnnUtils::setBlockStrides(*z, z_user_md); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // batchnorm forward description dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags); dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory and check whether reorder is required // x mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]); // z auto z_user_mem = mkldnnUtils::loadDataToMklStream(*z, engine, stream, z_user_md, op_ff_prim_desc.dst_desc(), args[DNNL_ARG_DST]); // mean auto mean_mkl_mem = dnnl::memory(op_ff_prim_desc.mean_desc(), engine, const_cast(mean->buffer())); args[DNNL_ARG_MEAN] = mean_mkl_mem; // variance auto var_mkl_mem = dnnl::memory(op_ff_prim_desc.variance_desc(), engine, const_cast(variance->buffer())); args[DNNL_ARG_VARIANCE] = var_mkl_mem; // gamma and beta (and their gradients) if they are present if(weights != nullptr) { auto w_mkl_mem = dnnl::memory(op_ff_prim_desc.weights_desc(), engine, const_cast(weights->buffer())); args[DNNL_ARG_WEIGHTS] = w_mkl_mem; } // run calculations dnnl::batch_normalization_forward(op_ff_prim_desc).execute(stream, args); // reorder outputs if necessary if (op_ff_prim_desc.dst_desc() != z_user_mem.get_desc()) dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem); stream.wait(); // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////////// static void batchnormBpMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray &dLdO, const NDArray* weights, NDArray* dLdI, NDArray* dLdW, const float epsilon, const bool isNCHW) { // unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x // x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc // mean -> 1D [c] // variance -> 1D [c] // dLdO - same shape as x // weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta // dLdI - same shape as x // dLdW - same shape as weights, dLdW({0,1, 0,0}) contains grad_gamma and dLdW({1,2, 0,0}) contains grad_beta const int xRank = x->rankOf(); // input type dnnl::memory::data_type type = dnnl::memory::data_type::f32; // indicate whether gamma or/and beta are given auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch if (weights != nullptr) flags |= dnnl::normalization_flags::use_scale_shift; dnnl::memory::dims dims; dnnl::memory::format_tag format; const int indHW = isNCHW ? 2 : 1; const int bS = x->sizeAt(0); const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1); int iD, iH, iW; if(xRank == 2) { dims = {bS, iC}; format = dnnl::memory::format_tag::nc; } else if(xRank == 4) { iH = x->sizeAt(indHW); iW = x->sizeAt(indHW + 1); dims = {bS, iC, iH, iW}; format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc; } else { // xRank = 5 iD = x->sizeAt(indHW); iH = x->sizeAt(indHW + 1); iW = x->sizeAt(indHW + 2); dims = {bS, iC, iD, iH, iW}; format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc; } // memory descriptors for arrays // x dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format); mkldnnUtils::setBlockStrides(*x, x_user_md); // dLdO dnnl::memory::desc dLdO_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any); dnnl::memory::desc dLdO_user_md = dnnl::memory::desc(dims, type, format); mkldnnUtils::setBlockStrides(dLdO, dLdO_user_md); // dLdI dnnl::memory::desc dLdI_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any); dnnl::memory::desc dLdI_user_md = dnnl::memory::desc(dims, type, format); mkldnnUtils::setBlockStrides(*dLdI, dLdI_user_md); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // batchnorm forward description dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags); dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine); // batchnorm backprop description dnnl::batch_normalization_backward::desc op_bp_desc(dnnl::prop_kind::backward, dLdO_mkl_md, x_mkl_md, epsilon, flags); dnnl::batch_normalization_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory and check whether reorder is required // x mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); // dLdO mkldnnUtils::loadDataToMklStream(dLdO, engine, stream, dLdO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]); // mean auto mean_mkl_mem = dnnl::memory(op_bp_prim_desc.mean_desc(), engine, const_cast(mean->buffer())); args[DNNL_ARG_MEAN] = mean_mkl_mem; // variance auto var_mkl_mem = dnnl::memory(op_bp_prim_desc.variance_desc(), engine, const_cast(variance->buffer())); args[DNNL_ARG_VARIANCE] = var_mkl_mem; // dLdI auto dLdI_user_mem = mkldnnUtils::loadDataToMklStream(*dLdI, engine, stream, dLdI_user_md, op_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]); // gamma and beta (and their gradients) if they are present if(weights != nullptr) { auto w_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, const_cast(weights->buffer())); args[DNNL_ARG_WEIGHTS] = w_mkl_mem; auto dLdW_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, dLdW->buffer()); args[DNNL_ARG_DIFF_WEIGHTS] = dLdW_mkl_mem; } // run calculations dnnl::batch_normalization_backward(op_bp_prim_desc).execute(stream, args); // reorder outputs if necessary if (op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc()) dnnl::reorder(args[DNNL_ARG_DIFF_SRC], dLdI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], dLdI_user_mem); stream.wait(); // shape::printArray(dLdI_mkl_mem.map_data(),8); // notations: // f = g * (gamma * ((x - m) / (v + eps)^0.5) + beta) -> means dLdO * ff_output // g = dLdO // stdInv = 1 / (v + eps)^0.5 // N - batch size (product of spatial dimensions) // formula for full derivative with respect to input (x) // dLdI = dfdx + dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx) // !!! MKL CALCULATES ONLY FIRST TERM dfdx, SO WE SHOULD CALCULATE TERM (dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)) BY OURSELF !!! // dfdm = -gamma*stdInv*g_sum; // dmdx = 1/N; // dvdx = 2 * (x - m) / N // dvdm = -2 * [(x - m)]_sum / N // dfdv = -0.5 * [g*(x - m)]_sum * stdInv^3, drop gamma here for calc convenience // finally: // dLdI = dfdm / N + (2/N) * dfdv * (dvdm/2 + (x - m)) // dLdI = gamma * ( stdInv * -g_sum/N + (2/N) * dfdv * (dvdm/2 + (x - m)) ) std::vector axes = isNCHW ? std::vector{1} : std::vector{xRank - 1}; const auto excludedAxes = ShapeUtils::evalDimsToExclude(x->rankOf(), axes); // inversed batch size 1 / N const auto Ninv = 1.f * mean->lengthOf() / x->lengthOf(); // x - mean NDArray xMinusMean(x); // empty array with same shape as x const_cast(x)->applyBroadcast(sd::broadcast::Subtract, axes, *mean, xMinusMean); // stdInv NDArray stdInv = *variance + epsilon; stdInv.applyTransform(transform::Reciprocal, stdInv); // 1 / (variance + epsilon) stdInv.applyTransform(transform::Sqrt, stdInv); // 1 / (variance + epsilon)^0.5 // dfdm / N auto dfdm = dLdO.reduceAlongDimension(sd::reduce::Sum, excludedAxes); dfdm *= stdInv; dfdm *= -Ninv; // dvdm / 2 NDArray dvdm(mean); // empty array with same shape as mean xMinusMean.reduceAlongDimension(sd::reduce::Sum, dvdm, excludedAxes); dvdm *= -Ninv; // (2/N)*dfdv NDArray dfdv(variance); // empty array with same shape as variance (xMinusMean * dLdO).reduceAlongDimension(sd::reduce::Sum, dfdv, excludedAxes); dfdv *= stdInv*stdInv*stdInv; dfdv *= -Ninv; // dvdm/2 + (x - m) xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dvdm, xMinusMean); // dfdv * (dvdm/2 + (x - m)) xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, dfdv, xMinusMean); // add dfdm / N xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dfdm, xMinusMean); // * gamma auto gamma = (*weights)({0,1, 0,0}); xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, gamma, xMinusMean); *dLdI += xMinusMean; } PLATFORM_IMPL(batchnorm, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc auto mean = INPUT_VARIABLE(1); // [c] auto variance = INPUT_VARIABLE(2); // [c] NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] auto output = OUTPUT_VARIABLE(0); // same shape as input const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const double epsilon = T_ARG(0); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + (int)applyScale); const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes); REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank); REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str()); if(gamma != nullptr) REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str()); if(beta != nullptr) REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same (except dLdO) for(int i = 1; i < block.width() - 1; ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_MKLDNN op: types of all input arrays should be the same !"); NDArray *weights = nullptr; if(applyScale || applyOffset) { weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType()); if(applyScale) (*weights)({0,1, 0,0}).assign(gamma); else (*weights)({0,1, 0,0}).assign(1); if(applyOffset) (*weights)({1,2, 0,0}).assign(beta); else (*weights)({1,2, 0,0}).assign(0); } const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2); batchnormMKLDNN(input, mean, variance, weights, output, epsilon, isNCHW); delete weights; return Status::OK(); } ////////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(batchnorm, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc auto mean = INPUT_VARIABLE(1); // [c] auto variance = INPUT_VARIABLE(2); // [c] NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] auto output = OUTPUT_VARIABLE(0); // same shape as input const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + (int)applyScale); const int numOfIntArgs = block.getIArguments()->size(); std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension DataType inputType = input->dataType(); DataType meanType = mean->dataType(); DataType varType = variance->dataType(); DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32; DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32; DataType outType = output->dataType(); const int inRank = input->rankOf(); return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) && (inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && outType == DataType::FLOAT32); } ////////////////////////////////////////////////////////////////////////// // PLATFORM_IMPL(batchnorm) { // auto input = INPUT_VARIABLE(0); // auto mean = INPUT_VARIABLE(1); // auto variance = INPUT_VARIABLE(2); // NDArray *gamma = nullptr; // NDArray *beta = nullptr; // auto output = OUTPUT_VARIABLE(0); // const bool applyScale = (bool) INT_ARG(0); // const bool applyOffset = (bool) INT_ARG(1); // const double epsilon = T_ARG(0); // if (applyScale) // gamma = INPUT_VARIABLE(3); // if (applyOffset) // beta = INPUT_VARIABLE(3 + static_cast(applyScale)); // std::vector axes; // if (block.numI() > 2) // for (int i = 2; i < block.numI(); ++i) // axes.push_back(INT_ARG(i)); // else // axes.push_back(input->rankOf() - 1); // std::vector shape({2, mean->lengthOf()}); // NDArray weights = NDArrayFactory::create('c', shape, block.launchContext()); // weights({0, 1, 0, 0}).assign(1.0f); // weights({1, 2, 0, 0}).assign(0.0f); // mkldnn_memory_desc_t empty; // dnnl::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty); // auto flag = dnnl::normalization_flags::use_global_stats; // if (applyScale || applyOffset) // flag |= dnnl::normalization_flags::use_scale_shift; // mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output, // &batchnorm_src_md, nullptr, &batchnorm_dst_md, // &user_src_md, nullptr, &user_dst_md, axes[0]); // auto batchnorm_desc = dnnl::batch_normalization_forward::desc(dnnl::prop_kind::forward_inference, batchnorm_src_md, epsilon, flag); // auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // dnnl::stream stream(engine); // auto batchnorm_prim_desc = dnnl::batch_normalization_forward::primitive_desc(batchnorm_desc, engine); // auto user_src_memory = dnnl::memory(user_src_md, engine, input->buffer()); // auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer()); // auto batchnorm_mean_memory = dnnl::memory(batchnorm_prim_desc.mean_desc(), engine, // mean->buffer()); // auto batchnorm_variance_memory = dnnl::memory(batchnorm_prim_desc.variance_desc(), engine, // variance->buffer()); // auto batchnorm_src_memory = user_src_memory; // dnnl::memory m(batchnorm_src_md, engine); // if (m.get_desc() != user_src_memory.get_desc()) { // batchnorm_src_memory = dnnl::memory(batchnorm_src_md, engine); // dnnl::reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory, // batchnorm_src_memory); // } // auto batchnorm_dst_memory = user_dst_memory; // if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) { // batchnorm_dst_memory = dnnl::memory(batchnorm_prim_desc.dst_desc(), engine); // } // if (applyScale || applyOffset) { // if (gamma != nullptr) { // weights({0, 1, 0, 0}).assign(gamma); // } // if (beta != nullptr) { // weights({1, 2, 0, 0}).assign(beta); // } // auto batchnorm_weights_memory = dnnl::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer()); // dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream, // {{MKLDNN_ARG_SRC, batchnorm_src_memory}, // {MKLDNN_ARG_MEAN, batchnorm_mean_memory}, // {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory}, // {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory}, // {MKLDNN_ARG_DST, batchnorm_dst_memory}}); // } else { // dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream, // {{MKLDNN_ARG_SRC, batchnorm_src_memory}, // {MKLDNN_ARG_MEAN, batchnorm_mean_memory}, // {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory}, // {MKLDNN_ARG_DST, batchnorm_dst_memory}}); // } // if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) { // dnnl::reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory, // user_dst_memory); // } // stream.wait(); // return Status::OK(); // } ////////////////////////////////////////////////////////////////////////// // PLATFORM_CHECK(batchnorm) { // // we don't want to use mkldnn if cpu doesn't support avx/avx2 // if (::optimalLevel() < 2) // return false; // auto input = INPUT_VARIABLE(0); // auto mean = INPUT_VARIABLE(1); // auto variance = INPUT_VARIABLE(2); // NDArray *gamma = nullptr; // NDArray *beta = nullptr; // auto output = OUTPUT_VARIABLE(0); // const bool applyScale = (bool) INT_ARG(0); // const bool applyOffset = (bool) INT_ARG(1); // const double epsilon = T_ARG(0); // if (applyScale) // gamma = INPUT_VARIABLE(3); // if (applyOffset) // beta = INPUT_VARIABLE(3 + static_cast(applyScale)); // std::vector axes; // if (block.numI() > 2) // for (int i = 2; i < block.numI(); ++i) // axes.push_back(INT_ARG(i)); // else // axes.push_back(input->rankOf() - 1); // return block.isUseMKLDNN() && // sd::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) && // axes.size() == 1; // } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(batchnorm_bp, ENGINE_CPU) { NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc NDArray* mean = INPUT_VARIABLE(1); // [c] NDArray* variance = INPUT_VARIABLE(2); // [c] NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] NDArray* dLdO = INPUT_VARIABLE(block.width() - 1); // same as input NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input NDArray* dLdM = OUTPUT_VARIABLE(1); // [c] NDArray* dLdV = OUTPUT_VARIABLE(2); // [c] NDArray* dLdG = nullptr; // [c] NDArray* dLdB = nullptr; // [c] const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const float epsilon = T_ARG(0); if(applyScale) { gamma = INPUT_VARIABLE(3); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(3 + (int)applyScale); dLdB = OUTPUT_VARIABLE(3 + (int)applyScale); } const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_BP_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes); REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_BP_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank); REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str()); REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str()); if(gamma != nullptr) REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str()); if(beta != nullptr) REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same for(int i = 1; i < block.width() - 1; ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP_MKLDNN op: types of all input arrays should be the same !"); NDArray *weights = nullptr, *dLdW = nullptr; if(applyScale || applyOffset) { weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType()); dLdW = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType()); if(applyScale) (*weights)({0,1, 0,0}).assign(gamma); else (*weights)({0,1, 0,0}).assign(1); if(applyOffset) (*weights)({1,2, 0,0}).assign(beta); else (*weights)({1,2, 0,0}).assign(0); } const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2); if (shape::strideDescendingCAscendingF(dLdO->shapeInfo())) batchnormBpMKLDNN(input, mean, variance, *dLdO, weights, dLdI, dLdW, epsilon, isNCHW); else batchnormBpMKLDNN(input, mean, variance, dLdO->dup(), weights, dLdI, dLdW, epsilon, isNCHW); *dLdM = 0; *dLdV = 0; if(applyScale || applyOffset) { if(applyScale) dLdG->assign((*dLdW)({0,1, 0,0})); if(applyOffset) dLdB->assign((*dLdW)({1,2, 0,0})); delete weights; delete dLdW; } return Status::OK(); } ////////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(batchnorm_bp, ENGINE_CPU) { NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw NDArray* mean = INPUT_VARIABLE(1); // [c] NDArray* variance = INPUT_VARIABLE(2); // [c] NDArray* dLdO = INPUT_VARIABLE(3); // same as input NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input NDArray* dLdM = OUTPUT_VARIABLE(1); // [c] NDArray* dLdV = OUTPUT_VARIABLE(2); // [c] NDArray* dLdG = nullptr; // [c] NDArray* dLdB = nullptr; // [c] const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); if(applyScale) { gamma = INPUT_VARIABLE(4); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(4 + (int)applyScale); dLdB = OUTPUT_VARIABLE(3 + (int)applyScale); } const int numOfIntArgs = block.getIArguments()->size(); std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension DataType inputType = input->dataType(); DataType meanType = mean->dataType(); DataType varType = variance->dataType(); DataType dLdOType = dLdO->dataType(); DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32; DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32; DataType dLdIType = dLdI->dataType(); DataType dLdGType = gamma != nullptr ? dLdG->dataType() : DataType::FLOAT32; DataType dLdBType = beta != nullptr ? dLdB->dataType() : DataType::FLOAT32; const int inRank = input->rankOf(); return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) && (inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 && dLdOType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && dLdIType == DataType::FLOAT32 && dLdGType == DataType::FLOAT32 && dLdBType == DataType::FLOAT32); } } } }