/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #if NOT_EXCLUDED(OP_biasadd) #include #include namespace sd { namespace ops { //////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(biasadd, 2, 1, true, 0, 0) { auto input = INPUT_VARIABLE(0); auto bias = INPUT_VARIABLE(1); auto output = OUTPUT_VARIABLE(0); const bool isNCHW = !block.getBArguments()->empty() ? B_ARG(0) : false; const int channelDim = isNCHW ? 1 : input->rankOf() - 1; // second or last REQUIRE_TRUE(bias->rankOf() == 1, 0, "BIASADD CUSTOM_OP: bias array should have rank = 1, but got %i instead !", bias->rankOf()); REQUIRE_TRUE(bias->sizeAt(0) == input->sizeAt(channelDim), 0, "BIASADD CUSTOM_OP: shapes of bias %s and input %s arrays are not suitable for broadcast operation along channel dimension %i !", ShapeUtils::shapeAsString(bias).c_str(), ShapeUtils::shapeAsString(input).c_str(), channelDim); REQUIRE_TRUE(output->isSameShape(input), 0, "BIASADD CUSTOM_OP: wrong shape of output array, expected is %s but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(output).c_str()); helpers::addBias(block, *input, *bias, *output, isNCHW); // input->applyBroadcast(sd::broadcast::Add, {channelDim}, bias, output); return Status::OK(); } DECLARE_SYN(bias_add, biasadd); //////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(biasadd) { auto xShape = inputShape->at(0); auto yShape = inputShape->at(1); auto dtype = ArrayOptions::dataType(yShape); return SHAPELIST(ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(xShape, dtype))); } DECLARE_TYPES(biasadd) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } //////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(biasadd_bp, 3, 2, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto bias = INPUT_VARIABLE(1); auto gradO = INPUT_VARIABLE(2); auto gradI = OUTPUT_VARIABLE(0); auto gradB = OUTPUT_VARIABLE(1); const bool isNCHW = !block.getBArguments()->empty() ? B_ARG(0) : false; const int channelDim = isNCHW ? 1 : input->rankOf() - 1; // second or last gradI->assign(gradO); gradO->reduceAlongDimension(sd::reduce::Sum, *gradB, ShapeUtils::evalDimsToExclude(gradO->rankOf(), {channelDim})); return ND4J_STATUS_OK; } DECLARE_SYN(BiasAddGrad, biasadd_bp); //////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(biasadd_bp) { auto input = inputShape->at(0); auto bias = inputShape->at(1); Nd4jLong* epsShape; Nd4jLong* gradShape; COPY_SHAPE(input, epsShape); COPY_SHAPE(bias, gradShape); return SHAPELIST(CONSTANT(epsShape), CONSTANT(gradShape)); } DECLARE_TYPES(biasadd_bp) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } } #endif