/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include #include namespace sd { namespace ops { namespace helpers { template __global__ static void copyBuffers(Nd4jLong* destination, void const* source, Nd4jLong bufferLength) { const auto tid = blockIdx.x * blockDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (int t = tid; t < bufferLength; t += step) { destination[t] = static_cast(reinterpret_cast(source)[t]); } } template __global__ static void confusionFunctorKernel(Nd4jLong* labelsBuffer, Nd4jLong* predictionBuffer, Nd4jLong bufferLength, void const* weightsBuffer, void* outputBuffer, const Nd4jLong* tadShape, const Nd4jLong* tadOffsets) { __shared__ int arrIdx, blocksPerArr; __shared__ T *z; __shared__ T const* w; __shared__ Nd4jLong *zShapeInfo, *xShapeInfo, arrLen; if (threadIdx.x == 0) { z = reinterpret_cast(outputBuffer); w = reinterpret_cast(weightsBuffer); arrLen = shape::length(tadShape); } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; const auto step = gridDim.x * blockDim.x; for (int t = tid; t < bufferLength; t += step) { auto label = labelsBuffer[t]; //->e(j); auto pred = predictionBuffer[t]; //->e(j); auto tZ = z + tadOffsets[label]; T val = (weightsBuffer == nullptr ? (T)1.0f : w[t]); auto idx = shape::getIndexOffset(pred, tadShape); tZ[idx] = val; } } template void _confusionFunctor(sd::LaunchContext * context, NDArray* labels, NDArray* predictions, NDArray* weights, NDArray* output) { auto stream = context->getCudaStream(); auto pack = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), 1); PointersManager manager(context, "helpers::confusion"); Nd4jLong* labelsLongBuffer = labels->dataType() == sd::DataType::INT64?(Nd4jLong*)labels->specialBuffer():nullptr; Nd4jLong* predictionLongBuffer = predictions->dataType() == sd::DataType::INT64?(Nd4jLong*)predictions->specialBuffer():nullptr; if (labelsLongBuffer == nullptr) { auto err = cudaMalloc(&labelsLongBuffer, labels->lengthOf() * sizeof(Nd4jLong)); if (err != 0) throw sd::cuda_exception::build("Cannot allocate memory for labels long buffer", err); // copy with type conversion copyBuffers<<<256, 512, 1024, *stream>>>(labelsLongBuffer, labels->specialBuffer(), labels->lengthOf()); } if (predictionLongBuffer == nullptr) { auto err = cudaMalloc(&predictionLongBuffer, predictions->lengthOf() * sizeof(Nd4jLong)); if (err != 0) throw sd::cuda_exception::build("Cannot allocate memory for predictions long buffer", err); // copy with type conversion copyBuffers<<<256, 512, 1024, *stream>>>(predictionLongBuffer, predictions->specialBuffer(), predictions->lengthOf()); } auto bufferLength = labels->lengthOf(); dim3 launchDims(32, 32, 1024); confusionFunctorKernel<<>>(labelsLongBuffer, predictionLongBuffer, bufferLength, weights != nullptr? weights->specialBuffer():nullptr, output->specialBuffer(), pack.specialShapeInfo(), pack.specialOffsets()); manager.synchronize(); if (predictionLongBuffer != predictions->specialBuffer()) { cudaError_t err = cudaFree(predictionLongBuffer); if (err != 0) throw sd::cuda_exception::build("Cannot deallocate memory for predictions long buffer", err); } if (labelsLongBuffer != labels->specialBuffer()) { cudaError_t err = cudaFree(labelsLongBuffer); if (err != 0) throw sd::cuda_exception::build("Cannot deallocate memory for labels long buffer", err); } } void confusionFunctor(sd::LaunchContext * context, NDArray* labels, NDArray* predictions, NDArray* weights, NDArray* output) { auto xType = predictions->dataType(); auto zType = output->dataType(); // weights can be null NDArray::prepareSpecialUse({output}, {labels, predictions, weights}); BUILD_DOUBLE_SELECTOR(xType, zType, _confusionFunctor, (context, labels, predictions, weights, output), INDEXING_TYPES, NUMERIC_TYPES); NDArray::registerSpecialUse({output}, {labels, predictions, weights}); } } } }