/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author sgazeos@gmail.com // #include #include namespace nd4j { namespace ops { namespace helpers { template static void Nudge(T min, T max, int quant_min, int quant_max, T* scale, T* nudged_min, T* nudged_max) { T quant_max_float = static_cast(quant_max); T quant_min_float = static_cast(quant_min); *scale = (max - min) / (quant_max_float - quant_min_float); auto zero_point_from_min = quant_min_float - min / *scale; uint16_t const nudged_zero_point = [zero_point_from_min, quant_min, quant_max, quant_max_float, quant_min_float] { if (zero_point_from_min < quant_min_float) { return static_cast(quant_min); } if (zero_point_from_min > quant_max_float) { return static_cast(quant_max); } return nd4j::math::nd4j_round(zero_point_from_min); }(); *nudged_min = (quant_min_float - nudged_zero_point) * (*scale); *nudged_max = (quant_max_float - nudged_zero_point) * (*scale); } template void fakeQuantWithMinMaxVarsPerChannel_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { int lowIntBound = narrowed ? 1 : 0; int upperIntBound = (1 << numBits) - 1; auto channels = input->sizeAt(-1); PRAGMA_OMP_PARALLEL_FOR for (auto i = 0; i < channels; i++) { T scale, nudged_min, nudged_max; Nudge(min->t(i), max->t(i), lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max); for (auto e = 0; e < input->lengthOf(); e += channels) { T val = input->t(e + i); if ( val <= nudged_min) val = nudged_min; else if (val >= nudged_max) val = nudged_max; output->t(e + i) = math::nd4j_floor((val - nudged_min)/scale + T(0.5)) * scale + nudged_min; } } } template static void WiseMinMax(NDArray* input, T min, T max, NDArray* output) { auto wiseMinMax = LAMBDA_T(x, min, max) { if (x < min) { return min; } else if (x > max) return max; return x; }; input->applyLambda(wiseMinMax, output); } template void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { int lowIntBound = narrowed ? 1 : 0; int upperIntBound = (1 << numBits) - 1; const float quant_min_float = static_cast(lowIntBound); const float quant_max_float = static_cast(upperIntBound); T nudged_min, nudged_max, scale; Nudge(min->t(0), max->t(0), quant_min_float, quant_max_float, &scale, &nudged_min, &nudged_max); WiseMinMax(input, nudged_min, nudged_max, output); *output -= nudged_min; (*output) /= scale; (*output) += T(0.5f); output->applyTransform(transform::Floor, nullptr, nullptr); (*output) *= scale; (*output) += nudged_min; } void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES); } void fakeQuantWithMinMaxVarsPerChannel(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVarsPerChannel_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void fakeQuantWithMinMaxVars_, (NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output), FLOAT_TYPES); } } }