/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include #include "mkldnnUtils.h" using namespace dnnl; namespace nd4j { namespace ops { namespace platforms { ////////////////////////////////////////////////////////////////////////// static void depthwiseConv2dMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int paddingMode, const bool isNCHW) { // mkl supports only following case: mC = 1, oC = iC // input [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc, since mkl doesn't support nhwc format we'll permute when nhwc is given // weights [kH, kW, iC, mC], mkl doesn't support this format, so we'll make permute // bias [oC], may be nullptr // output [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc // oC = iC*mC int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(indWmC); // channels multiplier const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d dnnl::memory::dims strides = { sH, sW }; dnnl::memory::dims padding = { pH, pW }; dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame }; dnnl::memory::dims dilation = { dH-1, dW-1}; // input type dnnl::memory::data_type xType; if(input->dataType() == DataType::FLOAT32) xType = dnnl::memory::data_type::f32; else if(input->dataType() == DataType::HALF) xType = dnnl::memory::data_type::f16; else if(input->dataType() == DataType::UINT8) xType = dnnl::memory::data_type::u8; else xType = dnnl::memory::data_type::s8; // weights type dnnl::memory::data_type wType = xType; if(xType == dnnl::memory::data_type::u8) wType = dnnl::memory::data_type::s8; // output and bias type (have the same types) dnnl::memory::data_type zType; if(output->dataType() == DataType::FLOAT32) zType = dnnl::memory::data_type::f32; else if(output->dataType() == DataType::HALF) zType = dnnl::memory::data_type::f16; else if(output->dataType() == DataType::UINT8) zType = dnnl::memory::data_type::u8; else if(output->dataType() == DataType::INT8) zType = dnnl::memory::data_type::s8; else zType = dnnl::memory::data_type::s32; dnnl::memory::format_tag xzFrmat = dnnl::memory::format_tag::nchw; dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::goihw; dnnl::memory::dims xDims = {bS, iC, iH, iW}; dnnl::memory::dims wDims = {iC, mC, 1, kH, kW}; dnnl::memory::dims zDims = {bS, oC, oH, oW}; // memory descriptors for arrays // input dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFrmat); x_user_md.data.format_kind = dnnl_blocked; // overrides format NHWC -> NCHW x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0); x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(isNCHW ? 1 : 3); x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(isNCHW ? 2 : 1); x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(isNCHW ? 3 : 2); // weights, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW]; dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat); w_user_md.data.format_kind = dnnl_blocked; // overrides format w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(2); // permute w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(3); w_user_md.data.format_desc.blocking.strides[2] = 0; w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(0); w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(1); // bias dnnl::memory::desc b_mkl_md; if(bias != nullptr) b_mkl_md = dnnl::memory::desc({oC}, zType, dnnl::memory::format_tag::x); // output dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xzFrmat); z_user_md.data.format_kind = dnnl_blocked; // overrides format z_user_md.data.format_desc.blocking.strides[0] = output->strideAt(0); z_user_md.data.format_desc.blocking.strides[1] = output->strideAt(isNCHW ? 1 : 3); z_user_md.data.format_desc.blocking.strides[2] = output->strideAt(isNCHW ? 2 : 1); z_user_md.data.format_desc.blocking.strides[3] = output->strideAt(isNCHW ? 3 : 2); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // operation primitive description dnnl::convolution_forward::desc op_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, x_mkl_md, w_mkl_md, b_mkl_md, z_mkl_md, strides, dilation, padding, padding_r); dnnl::convolution_forward::primitive_desc op_prim_desc(op_desc, engine); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory buffers and check whether reorder is required // input auto x_user_mem = dnnl::memory(x_user_md, engine, input->getBuffer()); const bool xReorder = op_prim_desc.src_desc() != x_user_mem.get_desc(); auto x_mkl_mem = xReorder ? dnnl::memory(op_prim_desc.src_desc(), engine) : x_user_mem; if (xReorder) dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem); args[DNNL_ARG_SRC] = x_mkl_mem; // weights auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer()); const bool wReorder = op_prim_desc.weights_desc() != w_user_mem.get_desc(); auto w_mkl_mem = wReorder ? dnnl::memory(op_prim_desc.weights_desc(), engine) : w_user_mem; if (wReorder) dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem); args[DNNL_ARG_WEIGHTS] = w_mkl_mem; // bias if(bias != nullptr) { auto b_mkl_mem = dnnl::memory(b_mkl_md, engine, bias->getBuffer()); args[DNNL_ARG_BIAS] = b_mkl_mem; } // output auto z_user_mem = dnnl::memory(z_user_md, engine, output->getBuffer()); const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc(); auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem; args[DNNL_ARG_DST] = z_mkl_mem; // run calculations dnnl::convolution_forward(op_prim_desc).execute(stream, args); // reorder outputs if necessary if (zReorder) dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); stream.wait(); // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////////// static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int paddingMode, const bool isNCHW) { // mkl supports only following case: mC = 1, oC = iC // input, gradI [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc, since mkl doesn't support nhwc format we'll permute when nhwc is given // weights, gradW [kH, kW, iC, mC], mkl doesn't support this format, so we'll make permute // gradB [oC], may be nullptr // gradO [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc // oC = iC*mC int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(indWmC); const int pWSame = (paddingMode == 2 && dW > 1) ? ((oW - 1) * sW + (kW - 1) * dW + 1 - iW) / 2 : pW; // dH == 1 for causal mode in conv1d dnnl::memory::dims strides = { sH, sW }; dnnl::memory::dims padding = { pH, pW }; dnnl::memory::dims padding_r = { (oH - 1) * sH - iH + kH - pH, (oW - 1) * sW - iW + kW - pWSame }; dnnl::memory::dims dilation = { dH-1, dW-1}; // input type dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // weights type dnnl::memory::data_type wType = weights->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradO type dnnl::memory::data_type gradOType = gradO->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradI type dnnl::memory::data_type gradIType = gradI->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradW type dnnl::memory::data_type gradWType = gradW->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradB type dnnl::memory::data_type gradBType = gradB != nullptr ? (gradB->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16) : dnnl::memory::data_type::f32; dnnl::memory::format_tag xFormat = dnnl::memory::format_tag::nchw; // isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc; dnnl::memory::format_tag wFormat = dnnl::memory::format_tag::goihw; dnnl::memory::dims xDims = {bS, iC, iH, iW}; dnnl::memory::dims wDims = {iC, mC, 1, kH, kW}; dnnl::memory::dims zDims = {bS, oC, oH, oW}; // memory descriptors for arrays // input dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormat); x_user_md.data.format_kind = dnnl_blocked; // overrides format x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0); x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(isNCHW ? 1 : 3); x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(isNCHW ? 2 : 1); x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(isNCHW ? 3 : 2); // weights, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW]; dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormat); w_user_md.data.format_kind = dnnl_blocked; // overrides format w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(2); // permute w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(3); w_user_md.data.format_desc.blocking.strides[2] = 0; w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(0); w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(1); // gradO dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormat); gradO_user_md.data.format_kind = dnnl_blocked; // overrides format gradO_user_md.data.format_desc.blocking.strides[0] = gradO->strideAt(0); gradO_user_md.data.format_desc.blocking.strides[1] = gradO->strideAt(isNCHW ? 1 : 3); gradO_user_md.data.format_desc.blocking.strides[2] = gradO->strideAt(isNCHW ? 2 : 1); gradO_user_md.data.format_desc.blocking.strides[3] = gradO->strideAt(isNCHW ? 3 : 2); // gradI dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormat); gradI_user_md.data.format_kind = dnnl_blocked; // overrides format gradI_user_md.data.format_desc.blocking.strides[0] = gradI->strideAt(0); gradI_user_md.data.format_desc.blocking.strides[1] = gradI->strideAt(isNCHW ? 1 : 3); gradI_user_md.data.format_desc.blocking.strides[2] = gradI->strideAt(isNCHW ? 2 : 1); gradI_user_md.data.format_desc.blocking.strides[3] = gradI->strideAt(isNCHW ? 3 : 2); // gradW, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW]; dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormat); gradW_user_md.data.format_kind = dnnl_blocked; // overrides format gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(2); // permute gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(3); gradW_user_md.data.format_desc.blocking.strides[2] = 0; gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(0); gradW_user_md.data.format_desc.blocking.strides[4] = gradW->strideAt(1); // gradB dnnl::memory::desc gradB_mkl_md; if(gradB != nullptr) gradB_mkl_md = dnnl::memory::desc({oC}, gradBType, dnnl::memory::format_tag::x); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // forward primitive description dnnl::convolution_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, x_mkl_md, w_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r); dnnl::convolution_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine); // backward data primitive description dnnl::convolution_backward_data::desc op_data_bp_desc(dnnl::algorithm::convolution_auto, gradI_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r); dnnl::convolution_backward_data::primitive_desc op_data_bp_prim_desc(op_data_bp_desc, engine, op_ff_prim_desc); // backward weights primitive description dnnl::convolution_backward_weights::desc op_weights_bp_desc(dnnl::algorithm::convolution_auto, x_mkl_md, gradW_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r); dnnl::convolution_backward_weights::primitive_desc op_weights_bp_prim_desc(op_weights_bp_desc, engine, op_ff_prim_desc); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory buffers and check whether reorder is required // input auto x_user_mem = dnnl::memory(x_user_md, engine, input->getBuffer()); const bool xReorder = op_weights_bp_prim_desc.src_desc() != x_user_mem.get_desc(); auto x_mkl_mem = xReorder ? dnnl::memory(op_weights_bp_prim_desc.src_desc(), engine) : x_user_mem; if (xReorder) dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem); args[DNNL_ARG_SRC] = x_mkl_mem; // weights auto w_user_mem = dnnl::memory(w_user_md, engine, weights->getBuffer()); const bool wReorder = op_data_bp_prim_desc.weights_desc() != w_user_mem.get_desc(); auto w_mkl_mem = wReorder ? dnnl::memory(op_data_bp_prim_desc.weights_desc(), engine) : w_user_mem; if (wReorder) dnnl::reorder(w_user_mem, w_mkl_mem).execute(stream, w_user_mem, w_mkl_mem); args[DNNL_ARG_WEIGHTS] = w_mkl_mem; // gradO auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, gradO->getBuffer()); const bool gradOReorder = op_data_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc(); auto gradO_mkl_mem = gradOReorder ? dnnl::memory(op_data_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem; if (gradOReorder) dnnl::reorder(gradO_user_mem, gradO_mkl_mem).execute(stream, gradO_user_mem, gradO_mkl_mem); args[DNNL_ARG_DIFF_DST] = gradO_mkl_mem; // gradI auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->getBuffer()); const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc(); auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem; args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem; // gradW auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->getBuffer()); const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc(); auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem; args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem; // gradB if(gradB != nullptr) { auto gradB_mkl_mem = dnnl::memory(gradB_mkl_md, engine, gradB->getBuffer()); args[DNNL_ARG_DIFF_BIAS] = gradB_mkl_mem; } // run backward data calculations dnnl::convolution_backward_data(op_data_bp_prim_desc).execute(stream, args); // run backward weights calculations dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); // reorder gradI if necessary if (gradIReorder) dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); if (gradWReorder) dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem); stream.wait(); // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(depthwise_conv2d, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW) int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(indWmC); // channels multiplier ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode); std::vector expectedWeightsShape = {kH, kW, iC, mC}; REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DEPTHWISECONV2D MKL OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); REQUIRE_TRUE(output->sizeAt(indIOioC) == iC*mC, 0, "CUSTOM DEPTHWISECONV2D MKL OP: the output_channels must be equal to input_channels * channels_multiplier = %i !", iC*mC); if (bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); depthwiseConv2dMKLDNN(input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW); return Status::OK(); } ////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(depthwise_conv2d, ENGINE_CPU) { // we don't want to use mkldnn if cpu doesn't support avx/avx2 if (::optimalLevel() < 2) return false; auto input = INPUT_VARIABLE(0); auto weights = INPUT_VARIABLE(1); auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; auto output = INPUT_VARIABLE(0); const DataType xType = input->dataType(); const DataType wType = weights->dataType(); const DataType zType = output->dataType(); const DataType bType = bias != nullptr ? bias->dataType() : zType; const int mC = weights->sizeAt(3); return block.isUseMKLDNN() && mC == 1 && ( (xType==DataType::FLOAT32 && wType==DataType::FLOAT32 && bType==DataType::FLOAT32 && zType==DataType::FLOAT32) || (xType==DataType::HALF && wType==DataType::HALF && bType==DataType::HALF && zType==DataType::HALF) || ((xType==DataType::UINT8 || xType==DataType::INT8) && wType==DataType::INT8 && (zType==DataType::UINT8 || zType==DataType::INT8 || zType==DataType::INT32 || zType==DataType::FLOAT32) && bType == zType) ); } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(depthwise_conv2d_bp, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC] always auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 4, 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf()); int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(indWmC); // channels multiplier int trueoH, trueoW; // correct output height, width ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, paddingMode); ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1}); std::vector expectedWeightsShape = {kH, kW, iC, mC}; REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if(bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); depthwiseConv2dNackPropMKLDNN(input, weights, gradO, gradI, gradW, gradB, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW); return Status::OK(); } ////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(depthwise_conv2d_bp, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC] always auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC] always auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] const DataType xType = input->dataType(); const DataType wType = weights->dataType(); const DataType gradOType = gradO->dataType(); const DataType gradIType = gradI->dataType(); const DataType gradWType = gradW->dataType(); const DataType gradBType = gradB != nullptr ? gradB->dataType() : DataType::FLOAT32; const int mC = weights->sizeAt(3); return block.isUseMKLDNN() && mC == 1 && ((xType==DataType::FLOAT32 || xType==DataType::BFLOAT16) && (wType==DataType::FLOAT32 || wType==DataType::BFLOAT16) && (gradOType==DataType::FLOAT32 || gradOType==DataType::BFLOAT16) && (gradIType==DataType::FLOAT32 || gradIType==DataType::BFLOAT16) && (gradWType==DataType::FLOAT32 || gradWType==DataType::BFLOAT16) && (gradBType==DataType::FLOAT32 || gradBType==DataType::BFLOAT16) ); } } } }