/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by raver119 on 17.10.2017. // #include #include #include #include #include namespace sd { namespace ops { Nd4jStatus LegacyStatsOp::validateAndExecute(Context &block) { auto x = INPUT_VARIABLE(0); auto z = OUTPUT_VARIABLE(0); NDArray::prepareSpecialUse({z}, {x}); // we assume that opNuk is either stored in block, or was provided via op constructor int opNum = block.opNum() < 0 ? this->_opNum : block.opNum(); // bias goes as first argument, unlike all other reductions bool biasCorrected = false; if (block.getIArguments()->size() > 0) biasCorrected = INT_ARG(0) > 0; ExtraArguments extras(*block.getTArguments()); PointersManager manager(block.launchContext(),"LegacyStatsOp"); if (block.getIArguments()->size() == 1 || (block.getIArguments()->size() == 2 && INT_ARG(1) == sd::DataTypeUtils::max())) { // scalar NativeOpExecutioner::execSummaryStatsScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo(), biasCorrected); } else { // dimensions for TAD // we should skip first argument here, because it's addressing bias correction std::vector dims(*block.getIArguments()); for (int e = 0; e < dims.size(); e++) if (dims[e] < 0) dims[e] += x->rankOf(); REQUIRE_TRUE(dims.size() > 0, 0, "Some dimensions requuired for reduction!"); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims); auto pTadShape = Environment::getInstance().isCPU() ? packX.primaryShapeInfo() : packX.specialShapeInfo(); //(Nd4jLong *) manager.replicatePointer(tad.tadOnlyShapeInfo, shape::shapeInfoByteLength(tad.tadOnlyShapeInfo)); auto pTadOffsets = Environment::getInstance().isCPU() ? packX.primaryOffsets() : packX.specialOffsets(); //(Nd4jLong *) manager.replicatePointer(tad.tadOffsets, tad.numTads * sizeof(Nd4jLong)); NativeOpExecutioner::execSummaryStats(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo(), dims.data(), (int) dims.size(), pTadShape, pTadOffsets, biasCorrected); } manager.synchronize(); STORE_RESULT(*z); return Status::OK(); } LegacyStatsOp::LegacyStatsOp() : LegacyOp::LegacyOp(1) { // } LegacyStatsOp::LegacyStatsOp(int opNum) : LegacyOp::LegacyOp(1, opNum) { // } LegacyOp* LegacyStatsOp::clone() { return new LegacyStatsOp(this->_opNum); } /** * For all reductions rules are simple: either you return scalar, or you return reduced NDArray. * It solely depends on input shape, and requested dimensions */ ShapeList *LegacyStatsOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) { auto inShape = inputShape->at(0); Nd4jLong *newShape; if (block.getIArguments()->size() == 0 || (block.getIArguments()->size() == 1 && INT_ARG(0) == sd::DataTypeUtils::max())) { // in this case we just return scalar ALLOCATE(newShape, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong); newShape[0] = 2; newShape[1] = 1; newShape[2] = 1; newShape[3] = 1; newShape[4] = 1; newShape[5] = 0; newShape[6] = 1; newShape[7] = 99; } else { // in this case we're building proper shape for reduction auto array = new NDArray(nullptr, inShape, block.launchContext()); auto newShape = ShapeUtils::evalReduceShapeInfo('c', *block.getIArguments(), *array, false, true); delete array; return SHAPELIST(newShape); } return SHAPELIST(CONSTANT(newShape)); } } }