/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 31.08.2018 // #include #include #include namespace sd { namespace ops { namespace helpers { /////////////////////////////////////////////////////////////////// template __global__ static void histogramFixedWidthCuda( const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const X leftEdge, const X rightEdge) { const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ Nd4jLong xLen, zLen, totalThreads, nbins; __shared__ X binWidth, secondEdge, lastButOneEdge; if (threadIdx.x == 0) { xLen = shape::length(xShapeInfo); nbins = shape::length(zShapeInfo); // nbins = zLen totalThreads = gridDim.x * blockDim.x; binWidth = (rightEdge - leftEdge ) / nbins; secondEdge = leftEdge + binWidth; lastButOneEdge = rightEdge - binWidth; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < xLen; i += totalThreads) { const X value = x[shape::getIndexOffset(i, xShapeInfo)]; Nd4jLong zIndex; if(value < secondEdge) zIndex = 0; else if(value >= lastButOneEdge) zIndex = nbins - 1; else zIndex = static_cast((value - leftEdge) / binWidth); sd::math::atomics::nd4j_atomicAdd(&z[shape::getIndexOffset(zIndex, zShapeInfo)], 1); } } /////////////////////////////////////////////////////////////////// template __host__ static void histogramFixedWidthCudaLauncher(const cudaStream_t *stream, const NDArray& input, const NDArray& range, NDArray& output) { const X leftEdge = range.e(0); const X rightEdge = range.e(1); histogramFixedWidthCuda<<<256, 256, 1024, *stream>>>(input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftEdge, rightEdge); } //////////////////////////////////////////////////////////////////////// void histogramFixedWidth(sd::LaunchContext* context, const NDArray& input, const NDArray& range, NDArray& output) { // firstly initialize output with zeros output.nullify(); PointersManager manager(context, "histogramFixedWidth"); NDArray::prepareSpecialUse({&output}, {&input}); BUILD_DOUBLE_SELECTOR(input.dataType(), output.dataType(), histogramFixedWidthCudaLauncher, (context->getCudaStream(), input, range, output), LIBND4J_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({&output}, {&input}); manager.synchronize(); } // template // __global__ static void copyBuffers(Nd4jLong* destination, void const* source, Nd4jLong* sourceShape, Nd4jLong bufferLength) { // const auto tid = blockIdx.x * gridDim.x + threadIdx.x; // const auto step = gridDim.x * blockDim.x; // for (int t = tid; t < bufferLength; t += step) { // destination[t] = reinterpret_cast(source)[shape::getIndexOffset(t, sourceShape)]; // } // } // template // __global__ static void returnBuffers(void* destination, Nd4jLong const* source, Nd4jLong* destinationShape, Nd4jLong bufferLength) { // const auto tid = blockIdx.x * gridDim.x + threadIdx.x; // const auto step = gridDim.x * blockDim.x; // for (int t = tid; t < bufferLength; t += step) { // reinterpret_cast(destination)[shape::getIndexOffset(t, destinationShape)] = source[t]; // } // } // template // static __global__ void histogramFixedWidthKernel(void* outputBuffer, Nd4jLong outputLength, void const* inputBuffer, Nd4jLong* inputShape, Nd4jLong inputLength, double const leftEdge, double binWidth, double secondEdge, double lastButOneEdge) { // __shared__ T const* x; // __shared__ Nd4jLong* z; // output buffer // if (threadIdx.x == 0) { // z = reinterpret_cast(outputBuffer); // x = reinterpret_cast(inputBuffer); // } // __syncthreads(); // auto tid = blockIdx.x * gridDim.x + threadIdx.x; // auto step = blockDim.x * gridDim.x; // for(auto i = tid; i < inputLength; i += step) { // const T value = x[shape::getIndexOffset(i, inputShape)]; // Nd4jLong currInd = static_cast((value - leftEdge) / binWidth); // if(value < secondEdge) // currInd = 0; // else if(value >= lastButOneEdge) // currInd = outputLength - 1; // sd::math::atomics::nd4j_atomicAdd(&z[currInd], 1LL); // } // } // template // void histogramFixedWidth_(sd::LaunchContext * context, const NDArray& input, const NDArray& range, NDArray& output) { // const int nbins = output.lengthOf(); // auto stream = context->getCudaStream(); // // firstly initialize output with zeros // //if(output.ews() == 1) // // memset(output.buffer(), 0, nbins * output.sizeOfT()); // //else // output.assign(0); // if (!input.isActualOnDeviceSide()) // input.syncToDevice(); // const double leftEdge = range.e(0); // const double rightEdge = range.e(1); // const double binWidth = (rightEdge - leftEdge ) / nbins; // const double secondEdge = leftEdge + binWidth; // double lastButOneEdge = rightEdge - binWidth; // Nd4jLong* outputBuffer; // cudaError_t err = cudaMalloc(&outputBuffer, output.lengthOf() * sizeof(Nd4jLong)); // if (err != 0) // throw cuda_exception::build("helpers::histogramFixedWidth: Cannot allocate memory for output", err); // copyBuffers<<<256, 512, 8192, *stream>>>(outputBuffer, output.specialBuffer(), output.special(), output.lengthOf()); // histogramFixedWidthKernel<<<256, 512, 8192, *stream>>>(outputBuffer, output.lengthOf(), input.specialBuffer(), input.special(), input.lengthOf(), leftEdge, binWidth, secondEdge, lastButOneEdge); // returnBuffers<<<256, 512, 8192, *stream>>>(output.specialBuffer(), outputBuffer, output.special(), output.lengthOf()); // //cudaSyncStream(*stream); // err = cudaFree(outputBuffer); // if (err != 0) // throw cuda_exception::build("helpers::histogramFixedWidth: Cannot deallocate memory for output buffer", err); // output.tickWriteDevice(); // //#pragma omp parallel for schedule(guided) // // for(Nd4jLong i = 0; i < input.lengthOf(); ++i) { // // // // const T value = input.e(i); // // // // if(value < secondEdge) // //#pragma omp critical // // output.p(0, output.e(0) + 1); // // else if(value >= lastButOneEdge) // //#pragma omp critical // // output.p(nbins-1, output.e(nbins-1) + 1); // // else { // // Nd4jLong currInd = static_cast((value - leftEdge) / binWidth); // //#pragma omp critical // // output.p(currInd, output.e(currInd) + 1); // // } // // } // } // void histogramFixedWidth(sd::LaunchContext * context, const NDArray& input, const NDArray& range, NDArray& output) { // BUILD_SINGLE_SELECTOR(input.dataType(), histogramFixedWidth_, (context, input, range, output), LIBND4J_TYPES); // } // BUILD_SINGLE_TEMPLATE(template void histogramFixedWidth_, (sd::LaunchContext * context, const NDArray& input, const NDArray& range, NDArray& output), LIBND4J_TYPES); } } }