/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author sgazeos@gmail.com // #include #include namespace sd { namespace ops { namespace helpers { //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // fakeQuantWithMinMaxVars_ // input - input tensor // min - min scalar tensor // max - max scalar tensor // numBits - (default 16bit) // narrowed - shrink is true // output - output tensor // template static __host__ __device__ void nudge(T min, T max, int quantMin, int quantMax, T* scale, T* nudgedMin, T* nudgedMax) { T quantMaxF = static_cast(quantMax); T quantMinF = static_cast(quantMin); *scale = (max - min) / (quantMaxF - quantMinF); auto zeroPointFromMin = quantMinF - min / *scale; uint16_t const nudgedZeroPoint = [zeroPointFromMin, quantMin, quantMax, quantMaxF, quantMinF] { if (zeroPointFromMin < quantMinF) { return static_cast(quantMin); } if (zeroPointFromMin > quantMaxF) { return static_cast(quantMax); } return sd::math::nd4j_round(zeroPointFromMin); }(); *nudgedMax = (quantMaxF - static_cast(nudgedZeroPoint)) * (*scale); *nudgedMin = (quantMinF - static_cast(nudgedZeroPoint)) * (*scale); } template void fakeQuantWithMinMaxVars_(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { int lowIntBound = narrowed?1:0; int upperIntBound = (1 << numBits) - 1; min->syncToHost(); // these are scalars, so nothing much happened max->syncToHost(); T scale, nudgedMin, nudgedMax; nudge(min->t(0), max->t(0), lowIntBound, upperIntBound, &scale, &nudgedMin, &nudgedMax); auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudgedMin, nudgedMax, scale) { T val = x; if (x < nudgedMin) { val = nudgedMin; } else if (x > nudgedMax) { val = nudgedMax; } else val = x; return (math::nd4j_floor((val - nudgedMin) / scale + T(0.5)) * scale + nudgedMin); }; input->applyLambda(wiseMinMaxAndSoOn, *output); } template static __global__ void fakeQuantWithMinMaxKernel(const T* input, const Nd4jLong* inputShape, T* min, T* max, int lowIntBound, int upperIntBound, Nd4jLong channels, T* output, const Nd4jLong* outputShape, Nd4jLong length) { __shared__ int block; if (threadIdx.x == 0) { block = length / channels; // to loop with last dimension as block } __syncthreads(); for (auto i = blockIdx.x; i < (int)channels; i += gridDim.x) { T scale, nudgedMin, nudgedMax; nudge(min[i], max[i], lowIntBound, upperIntBound, &scale, &nudgedMin, &nudgedMax); // loop over blocks to quantization between nudged min and max for (auto b = threadIdx.x; b < block; b += blockDim.x) { T val = input[shape::getIndexOffset(b * channels + i, inputShape)]; if (val < nudgedMin) { val = nudgedMin; } else if (val > nudgedMax) { val = nudgedMax; } output[shape::getIndexOffset(b * channels + i, outputShape)] = (math::nd4j_floor((val - nudgedMin) / scale + T(0.5f)) * scale + nudgedMin); }; } } template void fakeQuantWithMinMaxVarsPerChannel_(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { int lowIntBound = narrowed?1:0; int upperIntBound = (1 << numBits) - 1; auto channels = min->lengthOf(); auto length = input->lengthOf(); NDArray::prepareSpecialUse({output}, {min, max, input}); auto stream = context->getCudaStream(); T* inputBuf = input->dataBuffer()->specialAsT(); T* outputBuf = output->dataBuffer()->specialAsT(); T* minBuf = min->dataBuffer()->specialAsT(); T* maxBuf = max->dataBuffer()->specialAsT(); fakeQuantWithMinMaxKernel<<<128, 256, 256, *stream>>>(inputBuf, input->specialShapeInfo(), minBuf, maxBuf, lowIntBound, upperIntBound, channels, outputBuf, output->specialShapeInfo(), length); NDArray::registerSpecialUse({output}, {min, max, input}); } void fakeQuantWithMinMaxVars(NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVars_, (input, min, max, numBits, narrowed, output), FLOAT_TYPES); } void fakeQuantWithMinMaxVarsPerChannel(LaunchContext* context, NDArray* input, NDArray* min, NDArray* max, int numBits, bool narrowed, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), fakeQuantWithMinMaxVarsPerChannel_, (context, input, min, max, numBits, narrowed, output), FLOAT_TYPES); } } } }