/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include #include #include #include #include namespace sd { namespace ops { namespace helpers { // -------------------------------------------------------------------------------------------------------------- // // Segment Prod ops linear kernels // -------------------------------------------------------------------------------------------------------------- // template static __global__ void segmentProdLinearKernel(void* input, Nd4jLong const* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong const* outputShape) { __shared__ Nd4jLong xLen, zLen; __shared__ T* x; __shared__ T* z; if (threadIdx.x == 0) { x = reinterpret_cast(input); z = reinterpret_cast(output); xLen = shape::length(inputShape); zLen = shape::length(outputShape); } __syncthreads(); for(auto segment = blockIdx.x; segment < numOfClasses; segment += gridDim.x) { auto zIndex = shape::getIndexOffset(segment, outputShape); auto start = starts[segment]; auto finish = start + lengths[segment]; if (lengths[segment] == 0) { continue; } for (auto e = start + threadIdx.x; e < finish; e += blockDim.x) { auto xIndex = shape::getIndexOffset(e, inputShape); sd::math::atomics::nd4j_atomicMul(&z[segment], x[xIndex]); } } } // -------------------------------------------------------------------------------------------------------------- // template static __global__ void unsortedSegmentProdLinearKernel(T* input, Nd4jLong const* inputShape, I* indices, Nd4jLong const* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, T* output, Nd4jLong const* outputShape) { __shared__ Nd4jLong xLen, zLen; if (threadIdx.x == 0) { xLen = shape::length(inputShape); zLen = shape::length(outputShape); } __syncthreads(); auto start = threadIdx.x + blockIdx.x * blockDim.x; auto step = blockDim.x * gridDim.x; for (auto idx = start; idx < xLen; idx += step) { auto xIndex = shape::getIndexOffset(idx, inputShape); auto yIndex = shape::getIndexOffset(idx, indicesShape); auto segment = indices[yIndex]; auto zIndex = shape::getIndexOffset(segment, outputShape); if (lengths[segment] == 0) { continue; } sd::math::atomics::nd4j_atomicMul(&output[zIndex], input[xIndex]); } } // -------------------------------------------------------------------------------------------------------------- // // SegmentProd kernel template static __global__ void segmentProdTadKernel(void* inputBuf, Nd4jLong const* inputShape, Nd4jLong const* inputTads, Nd4jLong const* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong const* outputShape, Nd4jLong const* outputTads, Nd4jLong const* outputTadOffsets) { __shared__ Nd4jLong len, total; if (threadIdx.x == 0) { total = shape::sizeAt(inputShape, 0); len = shape::length(inputTads); } __syncthreads(); for (auto idx = blockIdx.x; idx < total; idx += gridDim.x) { auto x = reinterpret_cast(inputBuf) + inputTadOffsets[idx]; auto segment = indices[idx]; // / threadsPerSegment; auto z = reinterpret_cast(outputBuf) + outputTadOffsets[segment]; auto start = starts[segment]; auto finish = start + lengths[segment]; if (lengths[segment] == 0) continue; for (auto e = threadIdx.x; e < len; e += blockDim.x) { auto xIndex = shape::getIndexOffset(e, inputTads); auto zIndex = shape::getIndexOffset(e, outputTads); sd::math::atomics::nd4j_atomicMul(&z[zIndex], x[xIndex]); } } } // -------------------------------------------------------------------------------------------------------------- // template static void segmentProdFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) { auto stream = context->getCudaStream(); Nd4jLong numClasses = indices->e(indices->lengthOf() - 1) + 1; NDArray classesRangesLens = NDArrayFactory::create('c', {numClasses}, context); NDArray classesRangesBegs = NDArrayFactory::create('c', {numClasses}, context); output->assign(1); classesRangesBegs.assign(indices->lengthOf()); classesRangesLens.assign(0); dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32); fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens); int* begins = reinterpret_cast(classesRangesBegs.specialBuffer()); int* lengths = reinterpret_cast(classesRangesLens.specialBuffer()); if (input->isVector()) { segmentProdLinearKernel<<<128, 256, 128, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); auto inputTads = packX.specialShapeInfo(); auto inputTadOffsets = packX.specialOffsets(); auto outputTads = packZ.specialShapeInfo(); auto outputTadOffsets = packZ.specialOffsets(); segmentProdTadKernel<<<128, 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets); } } // -------------------------------------------------------------------------------------------------------------- // void segmentProdFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices}); BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), segmentProdFunctor_, (context, input, indices, output), NUMERIC_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices}); } // -------------------------------------------------------------------------------------------------------------- // template static void unsortedSegmentProdFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) { auto stream = context->getCudaStream(); // NDArray classes = NDArrayFactory::create('c', {numOfClasses, 2}); NDArray classesRangesBegs = NDArrayFactory::create('c', {numOfClasses}, context); NDArray classesRangesLens = NDArrayFactory::create('c', {numOfClasses}, context); // NDArray row = NDArrayFactory::create('c', {1, 2}, {(int)indices->lengthOf(), (int)0}); // classes.applyTrueBroadcast(sd::BroadcastOpsTuple::Assign(), &row, &classes); classesRangesBegs.assign(indices->lengthOf()); classesRangesLens.assign(0); dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32); // int* classesBuf = reinterpret_cast(classes.specialBuffer()); fillUpSegments(indices, numOfClasses, classesRangesBegs, classesRangesLens); int* begins = reinterpret_cast(classesRangesBegs.specialBuffer()); int* lengths = reinterpret_cast(classesRangesLens.specialBuffer()); output->assign(1); if (input->isVector()) { unsortedSegmentProdLinearKernel<<<128, 256, 256, *stream>>>( input->dataBuffer()->specialAsT(), input->specialShapeInfo(), indices->dataBuffer()->specialAsT(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->dataBuffer()->specialAsT(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); auto inputTads = packX.specialShapeInfo(); auto inputTadOffsets = packX.specialOffsets(); auto outputTads = packZ.specialShapeInfo(); auto outputTadOffsets = packZ.specialOffsets(); dims.x = input->sizeAt(0); segmentProdTadKernel<<<128, 256, 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets); } } // -------------------------------------------------------------------------------------------------------------- // void unsortedSegmentProdFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices}); BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentProdFunctor_, (context, input, indices, numOfClasses, output), NUMERIC_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices}); } // -------------------------------------------------------------------------------------------------------------- // template static __global__ void segmentProdBPLinearKernel(void* inputBuf, Nd4jLong const* inputShape, void* forwardOutput, Nd4jLong const* forwardShape, void* eps, Nd4jLong const* epsShape, void* indicesBuf, Nd4jLong const* indicesShape, void* outputBuf, Nd4jLong const* outputShape) { __shared__ T* x; __shared__ T* gradIn; __shared__ T* gradOut; __shared__ I* y; __shared__ T* z; __shared__ Nd4jLong xLen, gradLen; if (threadIdx.x == 0) { xLen = shape::length(inputShape); x = reinterpret_cast(inputBuf); y = reinterpret_cast(indicesBuf); z = reinterpret_cast(outputBuf); gradIn = reinterpret_cast(forwardOutput); gradOut = reinterpret_cast(eps); gradLen = shape::length(epsShape); } __syncthreads(); auto start = blockIdx.x * blockDim.x + threadIdx.x; auto step = gridDim.x * blockDim.x; for (auto e = start; e < xLen; e += step) { auto zOffset = shape::getIndexOffset(e, outputShape); auto xOffset = shape::getIndexOffset(e, inputShape); auto yOffset = shape::getIndexOffset(e, indicesShape); auto classIndex = y[yOffset]; auto gradOffsetI = shape::getIndexOffset(classIndex, forwardShape); auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape); z[zOffset] = gradOut[gradOffsetO] * gradIn[gradOffsetI] / x[xOffset]; } } // -------------------------------------------------------------------------------------------------------------- // template static __global__ void segmentProdBPTadKernel(void* inputBuf, Nd4jLong const* inputShape, void* forwardOutput, Nd4jLong const* forwardShape, void* eps, Nd4jLong const* epsShape, void* indicesBuf, Nd4jLong const* indicesShape, void* outputBuf, Nd4jLong const* outputShape, Nd4jLong const* inputTad, Nd4jLong const* inputOffsets, Nd4jLong const* gradInTad, Nd4jLong const* gradInOffsets, Nd4jLong const* gradOutTad, Nd4jLong const* gradOutOffsets, Nd4jLong const* outTad, Nd4jLong const* outOffsets) { __shared__ T* x; __shared__ T* gradIn; __shared__ T* gradOut; __shared__ I* y; __shared__ T* z; __shared__ Nd4jLong xLen, yLen, gradLen, currentLen; if (threadIdx.x == 0) { xLen = shape::length(inputShape); x = reinterpret_cast(inputBuf); y = reinterpret_cast(indicesBuf); z = reinterpret_cast(outputBuf); yLen = shape::length(indicesShape); gradOut = reinterpret_cast(eps); gradIn = reinterpret_cast(forwardOutput); gradLen = shape::length(epsShape); currentLen = shape::length(outTad); } __syncthreads(); for (auto i = blockIdx.x; i < yLen; i += gridDim.x) { auto yIndex = shape::getIndexOffset(i, indicesShape); auto segment = y[yIndex]; T* current = x + inputOffsets[i]; T* currentOut = z + outOffsets[i]; T* in = gradIn + gradInOffsets[segment]; T* outGrad = gradOut + gradOutOffsets[segment]; for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) { currentOut[e] = outGrad[e] * in[e] / current[e]; } } } // -------------------------------------------------------------------------------------------------------------- // template int segmentProdFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) { auto stream = context->getCudaStream(); NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT(), context);//->shapeInfo(), context); segmentProdFunctor_(context, input, indices, &tempRes); NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); if (input->isVector()) { Nd4jLong loopSize = input->lengthOf(); auto numOfClasses = gradOut->lengthOf(); //indices->e(loop_size - 1); segmentProdBPLinearKernel<<lengthOf(), loopSize, 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); auto packGradIn = sd::ConstantTadHelper::getInstance().tadForDimensions(tempRes.shapeInfo(), dimensions); auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions); auto inputTads = packX.specialShapeInfo(); auto inputTadOffsets = packX.specialOffsets(); auto outputTads = packZ.specialShapeInfo(); auto outputTadOffsets = packZ.specialOffsets(); auto gradInTads = packGradIn.specialShapeInfo(); auto gradInTadOffsets = packGradIn.specialOffsets(); auto gradOutTads = packGradOut.specialShapeInfo(); auto gradOutTadOffsets = packGradOut.specialOffsets(); segmentProdBPTadKernel<<lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets, outputTads, outputTadOffsets); } NDArray::registerSpecialUse({output}, {input, indices, gradOut}); return Status::OK(); } // -------------------------------------------------------------------------------------------------------------- // int segmentProdFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentProdFunctorBP_, (context, input, indices, gradOut, output), FLOAT_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices, gradOut}); } // -------------------------------------------------------------------------------------------------------------- // template static int unsortedSegmentProdFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) { auto stream = context->getCudaStream(); NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT(), context);//->shapeInfo(), context); unsortedSegmentProdFunctor_(context, input, indices, numOfClasses, &tempRes); NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); if (input->isVector()) { Nd4jLong loopSize = input->lengthOf(); auto numOfClasses = gradOut->lengthOf(); //indices->e(loop_size - 1); segmentProdBPLinearKernel<<lengthOf(), loopSize, 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); auto packGradIn = sd::ConstantTadHelper::getInstance().tadForDimensions(tempRes.shapeInfo(), dimensions); auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions); auto inputTads = packX.specialShapeInfo(); auto inputTadOffsets = packX.specialOffsets(); auto outputTads = packZ.specialShapeInfo(); auto outputTadOffsets = packZ.specialOffsets(); auto gradInTads = packGradIn.specialShapeInfo(); auto gradInTadOffsets = packGradIn.specialOffsets(); auto gradOutTads = packGradOut.specialShapeInfo(); auto gradOutTadOffsets = packGradOut.specialOffsets(); segmentProdBPTadKernel<<lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets, outputTads, outputTadOffsets); } NDArray::registerSpecialUse({output}, {input, indices, gradOut}); return Status::OK(); } // -------------------------------------------------------------------------------------------------------------- // int unsortedSegmentProdFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentProdFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices, gradOut}); } // -------------------------------------------------------------------------------------------------------------- // } } }