/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include "../MmulHelper.h" #include #include #include #include #include namespace sd { ////////////////////////////////////////////////////////////////////////////// // MXK x KxN = MxN -> actual sequence of axes doesn't matter template static void usualGemm(const NDArray* vA, const NDArray* vB, NDArray* vC, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) { const T1* A = vA->bufferAsT(); const T2* B = vB->bufferAsT(); T3* C = vC->bufferAsT(); const T3 alphaZ = alpha; const T3 betaZ = beta; const bool betaPersent = beta; const Nd4jLong* aShapeInfo = vA->shapeInfo(); const Nd4jLong* bShapeInfo = vB->shapeInfo(); const Nd4jLong* cShapeInfo = vC->shapeInfo(); const int aRank = vA->rankOf(); const int bRank = vB->rankOf(); const int cRank = vC->rankOf(); const Nd4jLong cLen = vC->lengthOf(); const int K = vA->sizeAt(aKaxis); auto func = PRAGMA_THREADS_FOR { std::vector aCoords(2), bCoords(2), cCoords(2); for (auto i = start; i < stop; ++i) { // evaluate C coordinates shape::index2coordsCPU(start, i, cShapeInfo, cCoords.data()); // evaluate A coordinates aCoords[aMaxis] = cCoords[cMaxis]; aCoords[aKaxis] = 0; // evaluate B coordinates bCoords[bKaxis] = 0; bCoords[bNaxis] = cCoords[cNaxis]; auto aOffset = shape::getOffset(aShapeInfo, aCoords.data()); auto bOffset = shape::getOffset(bShapeInfo, bCoords.data()); T3 val = A[aOffset] * B[bOffset]; // first iteration for (int j = 1; j < K; ++j) { // rest iterations aOffset += shape::stride(aShapeInfo)[aKaxis]; bOffset += shape::stride(bShapeInfo)[bKaxis]; val = val + A[aOffset] * B[bOffset]; } auto cOffset = shape::getOffset(cShapeInfo, cCoords.data()); if(betaPersent) C[cOffset] = alphaZ * val + betaZ * C[cOffset]; else C[cOffset] = alphaZ * val; } }; samediff::Threads::parallel_tad(func, 0, cLen); } ////////////////////////////////////////////////////////////////////////////// // MXN x N = M -> actual sequence of {M,N} axes doesn't matter template static void usualGemv(const NDArray* vA, const NDArray* vX, NDArray* vY, const int incx, const int incy, const int aMaxis, const double alpha, const double beta) { const T1* A = vA->bufferAsT(); const T2* X = vX->bufferAsT(); T3* Y = vY->bufferAsT(); const T3 alphaZ = alpha; const T3 betaZ = beta; const bool betaPersent = beta; const Nd4jLong* aShapeInfo = vA->shapeInfo(); const Nd4jLong* xShapeInfo = vX->shapeInfo(); const Nd4jLong* yShapeInfo = vY->shapeInfo(); const int N = vX->lengthOf(); const int M = vY->lengthOf(); const auto aMstride = vA->strideAt(aMaxis); const auto aNstride = vA->strideAt(aMaxis == 0 ? 1 : 0); auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; ++i) { // evaluate offsets auto aOffset = i * aMstride; auto xOffset = 0; T3 val = A[aOffset] * X[xOffset]; // first iteration for (int j = 1; j < N; ++j) { // rest iterations aOffset += aNstride; xOffset += incx; val = val + A[aOffset] * X[xOffset]; } auto yOffset = i * incy; if(betaPersent) Y[yOffset] = alphaZ * val + betaZ * Y[yOffset]; else Y[yOffset] = alphaZ * val; } }; samediff::Threads::parallel_tad(func, 0, M); } ////////////////////////////////////////////////////////////////////////////// // (X*Y) = Z[0] template static void usualDot(const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) { T1* X = reinterpret_cast(const_cast(vX)); T2* Y = reinterpret_cast(const_cast(vY)); T3* Z = reinterpret_cast(vZ); T3 alphaZ(alpha), betaZ(beta); const bool betaPersent = beta; T3 sum = 0; PRAGMA_OMP_PARALLEL_FOR_ARGS(OMP_IF(length > Environment::getInstance().elementwiseThreshold()) schedule(guided) reduction(OMP_SUMT:sum)) for(Nd4jLong i = 0; i < length; ++i) sum += X[i * incx] * Y[i * incy]; if(betaPersent) *Z = alphaZ * sum + betaZ * *Z; else *Z = alphaZ * sum; } ////////////////////////////////////////////////////////////////////////////// // MXK x KxN = MxN NDArray* MmulHelper::mmulMxM(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) { if (A->dataType() != B->dataType()) throw datatype_exception::build("mmulMxM expects all data types to be the same", A->dataType(), B->dataType()); if (C != nullptr && A->dataType() != C->dataType()) throw datatype_exception::build("mmulMxM expects all data types to be the same", A->dataType(), C->dataType()); if(A->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxM: rank of A array is not equal 2 !"); if(B->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxM: rank of B array is not equal 2 !"); const auto M = A->sizeAt(0); const auto K = A->sizeAt(1); const auto N = B->sizeAt(1); if(C != nullptr && C->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxM: rank of C array is not equal 2 !"); if(B->sizeAt(0) != K) throw std::runtime_error("MmulHelper::mmulMxM: B array has wrong number of rows !"); if(C != nullptr && C->sizeAt(0) != M) throw std::runtime_error("MmulHelper::mmulMxM: C array has wrong number of rows !"); if(C != nullptr && C->sizeAt(1) != N) throw std::runtime_error("MmulHelper::mmulMxM: C array has wrong number of columns !"); if(C == nullptr) C = new NDArray(outOrder, {M,N}, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext()); if (C->isEmpty()) return C; const auto aType = A->dataType(); const auto bType = B->dataType(); const auto cType = C->dataType(); const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC); const bool hasGemm = BlasHelper::getInstance().hasGEMM(aType); const bool typeDouble = hasGemm && ABC && aType == DataType::DOUBLE; const bool typeFloat = hasGemm && ABC && aType == DataType::FLOAT32; if(!typeFloat && !typeDouble) { BUILD_SINGLE_SELECTOR_THRICE(aType, usualGemm, (A, B, C, 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES); // BUILD_TRIPLE_SELECTOR(aType, bType, cType, usualGemm, (A, B, C, 0, 1, 0, 1, 0, 1, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); } else { std::vector toDelete; NDArray *pA(const_cast(A)), *pB(const_cast(B)), *pC(const_cast(C)); bool aMcont = M == 1 || A->strideAt(0) == 1; bool aKcont = K == 1 || A->strideAt(1) == 1; bool bKcont = K == 1 || B->strideAt(0) == 1; bool bNcont = N == 1 || B->strideAt(1) == 1; bool cMcont = M == 1 || C->strideAt(0) == 1; bool cNcont = N == 1 || C->strideAt(1) == 1; if(!aMcont && !aKcont) { pA = new NDArray(A->dup('f')); toDelete.push_back(pA); aMcont = true; } if(!bKcont && !bNcont) { pB = new NDArray(B->dup('f')); toDelete.push_back(pB); bKcont = true; } if(!cMcont && !cNcont) { pC = new NDArray(C->dup('f')); toDelete.push_back(pC); cMcont = true; } const CBLAS_ORDER blasOrder = cMcont ? CblasColMajor : CblasRowMajor; const bool transA = (!aMcont && cMcont) || (aMcont && !cMcont); const bool transB = (!bKcont && cMcont) || (bKcont && !cMcont); const CBLAS_TRANSPOSE transAblas = transA ? CblasTrans : CblasNoTrans; const CBLAS_TRANSPOSE transBblas = transB ? CblasTrans : CblasNoTrans; const int lda = (aMcont && aKcont) ? M : !aMcont ? pA->strideAt(0) : pA->strideAt(1); const int ldb = (bKcont && bNcont) ? K : !bKcont ? pB->strideAt(0) : pB->strideAt(1); const int ldc = (cMcont && cNcont) ? M : !cMcont ? pC->strideAt(0) : pC->strideAt(1); if(typeFloat) { BlasHelper::getInstance().sgemm()(blasOrder, transAblas, transBblas, M, N, K, (float) alpha, pA->bufferAsT(), lda, pB->bufferAsT(), ldb, (float) beta, pC->bufferAsT(), ldc); } else if(typeDouble) { BlasHelper::getInstance().dgemm()(blasOrder, transAblas, transBblas, M, N, K, (double) alpha, pA->bufferAsT(), lda, pB->bufferAsT(), ldb, (double) beta, pC->bufferAsT(), ldc); } if(pC != C) { C->assign(pC); delete pC; } if(pA != A) delete pA; if(pB != B) delete pB; } return C; } //////////////////////////////////////////////////////////////////////////// // MXN x N = M NDArray* MmulHelper::mmulMxV(const NDArray* A, const NDArray* X, sd::NDArray* Y, const double alpha, const double beta, const char outOrder) { if (X->dataType() != A->dataType()) throw datatype_exception::build("mmulMxV expects all data types to be the same", A->dataType(), X->dataType()); if (Y != nullptr && X->dataType() != Y->dataType()) throw datatype_exception::build("mmulMxV expects all data types to be the same", A->dataType(), Y->dataType()); int xLenDim, yLenDim(0); if(A->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxV: rank of A array is not equal 2 !"); if(!shape::isCommonVector(X->shapeInfo(), xLenDim)) throw std::runtime_error("MmulHelper::mmulMxV: X array must be vector !"); const auto M = A->sizeAt(0); const auto N = A->sizeAt(1); if(Y != nullptr && !shape::isCommonVector(Y->shapeInfo(), yLenDim)) throw std::runtime_error("MmulHelper::mmulMxV: Y array must be vector !"); if(X->lengthOf() != N) throw std::runtime_error("MmulHelper::mmulMxV: X vector has wrong length !"); if(Y != nullptr && Y->lengthOf() != M) throw std::runtime_error("MmulHelper::mmulMxV: Y array has wrong length !"); if(Y == nullptr) Y = new NDArray(outOrder, {M}, DataTypeUtils::pickPairwiseResultType(A->dataType(), X->dataType()), A->getContext()); if (Y->isEmpty()) return Y; const int incx = X->stridesOf()[xLenDim]; const int incy = Y->stridesOf()[yLenDim]; const auto aType = A->dataType(); const auto xType = X->dataType(); const auto yType = Y->dataType(); const bool AX(aType == xType), AY(aType == yType), AXY(AX && AY); const bool hasGemv = BlasHelper::getInstance().hasGEMV(aType); const bool typeDouble = hasGemv && AXY && aType == DataType::DOUBLE; const bool typeFloat = hasGemv && AXY && aType == DataType::FLOAT32; if(!typeDouble && !typeFloat) { BUILD_SINGLE_SELECTOR_THRICE(aType, usualGemv, (A, X, Y, incx, incy, 0, alpha, beta), NUMERIC_TYPES); // BUILD_TRIPLE_SELECTOR(aType, xType, yType, usualGemv, (A, X, Y, incx, incy, 0, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); } else { NDArray *pA(const_cast(A)); bool aMcont = M == 1 || A->strideAt(0) == 1; bool aNcont = N == 1 || A->strideAt(1) == 1; if(!aMcont && !aNcont) { pA = new NDArray(A->dup('f')); aMcont = true; } const CBLAS_ORDER blasOrder = aMcont ? CblasColMajor : CblasRowMajor; const int lda = (aMcont && aNcont) ? M : !aMcont ? pA->strideAt(0) : pA->strideAt(1); // choose appropriate cuda gemm api depending on data types if(typeDouble) { BlasHelper::getInstance().dgemv()(blasOrder, CblasNoTrans, M, N, alpha, (double*)pA->buffer(), lda, (double*)X->buffer(), incx, beta, (double*)Y->buffer(), incy); } else if(typeFloat) { BlasHelper::getInstance().sgemv()(blasOrder, CblasNoTrans, M, N, (float)alpha, (float*)pA->buffer(), lda, (float*)X->buffer(), incx, (float)beta, (float*)Y->buffer(), incy); } if(pA != A) delete pA; } return Y; } //////////////////////////////////////////////////////////////////////////// // (X * Y) = Z[0] NDArray* MmulHelper::dot(const NDArray* X, const NDArray* Y, sd::NDArray* Z, const double alpha, const double beta) { if (X->dataType() != Y->dataType()) throw datatype_exception::build("Dot expects all data types to be the same", X->dataType(), Y->dataType()); if (Z != nullptr && X->dataType() != Z->dataType()) throw datatype_exception::build("Dot expects all data types to be the same", X->dataType(), Z->dataType()); int xLenDim(0), yLenDim(0); if(!shape::isCommonVector(X->shapeInfo(), xLenDim)) throw std::runtime_error("MmulHelper::dot: X array must be vector !"); if(!shape::isCommonVector(Y->shapeInfo(), yLenDim)) throw std::runtime_error("MmulHelper::dot: Y array must be vector !"); if(Z != nullptr && !Z->isScalar()) throw std::runtime_error("MmulHelper::dot: Z array must be scalar !"); const auto length = X->lengthOf(); if(Y->lengthOf() != length) throw std::runtime_error("MmulHelper::dot: lengths of input vectors are different !"); if(Z == nullptr) Z = new NDArray(DataTypeUtils::pickPairwiseResultType(X->dataType(), Y->dataType()), X->getContext()); const Nd4jLong incx = X->stridesOf()[xLenDim]; const Nd4jLong incy = Y->stridesOf()[yLenDim]; const auto xType = X->dataType(); const auto yType = Y->dataType(); const auto zType = Z->dataType(); BUILD_SINGLE_SELECTOR_THRICE(xType, usualDot, (length, alpha, X->buffer(), incx, Y->buffer(), incy, beta, Z->buffer()), NUMERIC_TYPES); //BUILD_TRIPLE_SELECTOR(xType, yType, zType, usualDot, (length, alpha, X->buffer(), incx, Y->buffer(), incy, beta, Z->buffer()), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); return Z; } ////////////////////////////////////////////////////////////////////////////// // [bS,M,K] x [bS,K,N] = [bS,M,N] // [bS,M,K] x [K,N] = [bS,M,N] // [M,K] x [bS,K,N] = [bS,M,N] // bS could stand for several axes template static void batchedGemm(const NDArray* vA, const NDArray* vB, NDArray* vC, const int* aBatchDims, const int* bBatchDims, const int* cBatchDims, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) { const T1* A = vA->bufferAsT(); const T2* B = vB->bufferAsT(); T3* C = vC->bufferAsT(); const T3 alphaZ = alpha; const T3 betaZ = beta; const bool betaPersent = beta; const Nd4jLong* aShapeInfo = vA->shapeInfo(); const Nd4jLong* bShapeInfo = vB->shapeInfo(); const Nd4jLong* cShapeInfo = vC->shapeInfo(); const int aRank = vA->rankOf(); const int bRank = vB->rankOf(); const int cRank = vC->rankOf(); const Nd4jLong cLen = vC->lengthOf(); const int K = vA->sizeAt(aKaxis); auto func = PRAGMA_THREADS_FOR { std::vector aCoords(aRank), bCoords(bRank), cCoords(cRank); for (auto i = start; i < stop; ++i) { // evaluate C coordinates shape::index2coordsCPU(start, i, cShapeInfo, cCoords.data()); // calculate index of current batch Nd4jLong batchInd; if(cRank > 2) batchInd = shape::coords2index(cShapeInfo, cBatchDims, cRank - 2, cCoords.data()); // evaluate A coordinates if(aRank > 2) shape::index2coords(batchInd, aShapeInfo, aBatchDims, aRank - 2, aCoords.data()); aCoords[aMaxis] = cCoords[cMaxis]; aCoords[aKaxis] = 0; // evaluate B coordinates if(bRank > 2) shape::index2coords(batchInd, bShapeInfo, bBatchDims, bRank - 2, bCoords.data()); bCoords[bKaxis] = 0; bCoords[bNaxis] = cCoords[cNaxis]; auto aOffset = shape::getOffset(aShapeInfo, aCoords.data()); auto bOffset = shape::getOffset(bShapeInfo, bCoords.data()); T3 val = A[aOffset] * B[bOffset]; // first iteration for (int j = 1; j < K; ++j) { // rest iterations aOffset += shape::stride(aShapeInfo)[aKaxis]; bOffset += shape::stride(bShapeInfo)[bKaxis]; val = val + A[aOffset] * B[bOffset]; } auto cOffset = shape::getOffset(cShapeInfo, cCoords.data()); if(betaPersent) C[cOffset] = alphaZ * val + betaZ * C[cOffset]; else C[cOffset] = alphaZ * val; } }; samediff::Threads::parallel_tad(func, 0, cLen); } ////////////////////////////////////////////////////////////////////////// // [bS,M,K] x [bS,K,N] = [bS,M,N] // [bS,M,K] x [K,N] = [bS,M,N] // [M,K] x [bS,K,N] = [bS,M,N] // bS could stand for several axes NDArray* MmulHelper::mmulNxN(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) { const int aRank = A->rankOf(); const int bRank = B->rankOf(); // input ranks validation if(aRank > bRank && bRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !"); else if(bRank > aRank && aRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !"); else if (aRank == bRank ) { for(int i = 0; i < aRank - 2; ++i) if(A->sizeAt(i) != B->sizeAt(i)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); } if(A->sizeAt(-1) != B->sizeAt(-2)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); // validation of C array std::vector cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector(); cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2); cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1); if(C != nullptr ) { if(!C->isSameShape(cExpectedShape)) throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !"); } else { C = new NDArray(outOrder, cExpectedShape, B->dataType()); } if (C->isEmpty()) return C; const int cRank = C->rankOf(); const int aMaxis(aRank-2), aKaxis(aRank-1), bKaxis(bRank-2), bNaxis(bRank-1), cMaxis(cRank-2), cNaxis(cRank-1); std::vector aBatchDims, bBatchDims, cBatchDims; if(aRank > 2) aBatchDims = ShapeUtils::evalDimsToExclude(aRank, {aMaxis, aKaxis}); if(bRank > 2) bBatchDims = ShapeUtils::evalDimsToExclude(bRank, {bKaxis, bNaxis}); if(cRank > 2) cBatchDims = ShapeUtils::evalDimsToExclude(cRank, {cMaxis, cNaxis}); // BUILD_TRIPLE_SELECTOR(A->dataType(), B->dataType(), C->dataType(), batchedGemm, (A, B, C, aBatchDims.data(), bBatchDims.data(), cBatchDims.data(), aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); BUILD_SINGLE_SELECTOR_THRICE(A->dataType(), batchedGemm, (A, B, C, aBatchDims.data(), bBatchDims.data(), cBatchDims.data(), aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES); return C; } /* ////////////////////////////////////////////////////////////////////////// NDArray* MmulHelper::mmulNxN(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) { const int aRank = A->rankOf(); const int bRank = B->rankOf(); // input ranks validation if(aRank > bRank && bRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !"); else if(bRank > aRank && aRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !"); else if (aRank == bRank ) { for(int i = 0; i < aRank - 2; ++i) if(A->sizeAt(i) != B->sizeAt(i)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); } if(A->sizeAt(-1) != B->sizeAt(-2)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); // validation of C array std::vector cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector(); cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2); cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1); if(C != nullptr ) { if(!C->isSameShape(cExpectedShape)) throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !"); } else { C = new NDArray(outOrder, cExpectedShape, B->dataType()); } // multiplication const std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(C->rankOf(), {-2, -1}); const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(C->shapeInfo(), dimsToExclude); std::vector idxRanges(2 * C->rankOf()); // #pragma omp parallel for schedule(guided) firstprivate(idxRanges) for(Nd4jLong i = 0; i < numOfSubArrs; ++i) { ShapeUtils::evalIdxRangesForSubArr(i, C->shapeInfo(), dimsToExclude, idxRanges.data()); NDArray cSubArr = (*C)(idxRanges); if(aRank > bRank) { NDArray aSubArr = (*A)(idxRanges); mmulMxM(&aSubArr, B, &cSubArr, 1., 0., outOrder); } else if(bRank > aRank) { NDArray bSubArr = (*B)(idxRanges); mmulMxM(A, &bSubArr, &cSubArr, 1., 0, outOrder); } else { NDArray aSubArr = (*A)(idxRanges); NDArray bSubArr = (*B)(idxRanges); mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., outOrder); } } return C; } ////////////////////////////////////////////////////////////////////////////// // MXK x KxN = MxN template static void usualGemm(const char cOrder, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) { T1* A = reinterpret_cast(const_cast(vA)); T2* B = reinterpret_cast(const_cast(vB)); T3* C = reinterpret_cast(vC); T3 alphaZ(alpha), betaZ(beta); const bool flagC = cOrder == 'f'; const bool flagA = (flagC && transA) || (!flagC && !transA); const bool flagB = (flagC && transB) || (!flagC && !transB); // PRAGMA_OMP_PARALLEL_FOR_ARGS(OMP_IF(M*N > Environment::getInstance().elementwiseThreshold()) schedule(guided)) // for(uint row = 0; row < M; ++row) { // T3* c = flagC ? (C + row) : (C + row * ldc); // for(uint col = 0; col < N; ++col) // c[flagC ? col * ldc : col] = 0; // for(uint i = 0; i < K; ++i) { // T3* b = flagB ? (B + i * ldb) : (B + i); // T3* a = flagA ? (A + row * lda + i) : (A + row + i * lda); // if(flagC) { // for(uint col = 0; col < N; ++col) { // if(betaZ) // c[col * ldc] += a * b[flagB ? col : col * ldb] + betaZ * c[col * ldc]; // else // c[col * ldc] += a * b[flagB ? col : col * ldb]; // } // } // else { // for(uint col = 0; col < N; ++col) { // if(betaZ) // c[col] += a * b[flagB ? col : col * ldb] + betaZ * c[col]; // else // c[col] += a * b[flagB ? col : col * ldb]; // } // } // } // } auto func = PRAGMA_THREADS_FOR_2D { ; for (auto row = start_x; row < stop_x; row += inc_x) { for (auto col = start_y; col < stop_y; col += inc_y) { T3 *c = flagC ? (C + row + col * ldc) : (C + row * ldc + col); T3 val = 0; for (uint i = 0; i < K; ++i) { T3 a = flagA ? *(A + row * lda + i) : *(A + row + i * lda); T3 b = flagB ? *(B + col + i * ldb) : *(B + col * ldb + i); val += alphaZ * a * b; } if (betaZ) *c = val + betaZ * *c; else *c = val; } } }; samediff::Threads::parallel_tad(func, 0, M, 1, 0, N, 1); } ////////////////////////////////////////////////////////////////////////////// // MXN x N = M template static void usualGemv(const char aOrder, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) { T1* A = reinterpret_cast(const_cast(vA)); T2* X = reinterpret_cast(const_cast(vX)); T3* Y = reinterpret_cast(vY); T3 alphaZ(alpha), betaZ(beta); const bool flagA = aOrder == 'f'; auto func = PRAGMA_THREADS_FOR { for (auto row = start; row < stop; row += increment) { T3 *y = Y + row * incy; T3 val = 0; for (int i = 0; i < N; ++i) { T3 a = flagA ? *(A + row + i * lda) : *(A + row * lda + i); T3 x = *(X + i * incx); val += alphaZ * a * x; } if (betaZ) *y = val + betaZ * *y; else *y = val; } }; samediff::Threads::parallel_tad(func, 0, M); } */ //BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const char cOrder, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* A, const int lda, const void* B, const int ldb, const double beta, void* C, const int ldc), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); //BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const char aOrder, const int M, const int N, const double alpha, const void* A, const int lda, const void* B, const int incx, const double beta, void* C, const int incy), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); //BUILD_TRIPLE_TEMPLATE(template void usualDot, (const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES); }