/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////////// // bsxMXK x bSxKxN = bSxMxN void bgemm(const std::vector& vA, const std::vector& vB, std::vector& vC, const NDArray* alphas, const NDArray* betas, int transA, int transB, int M, int N, int K, const int lda, const int ldb, const int ldc) { const auto bS = vA.size(); // batch size std::vector pA(bS), pB(bS), pC(bS); std::vector toDelete; for(int i = 0; i < bS; ++i) { if(vA[i]->ews() != 1) { pA[i] = new NDArray(vA[i]->dup('f')); toDelete.emplace_back(pA[i]); } else pA[i] = vA[i]; if(vB[i]->ews() != 1) { pB[i] = new NDArray(vB[i]->dup('f')); toDelete.emplace_back(pB[i]); } else pB[i] = vB[i]; if(vC[i]->ews() != 1) { pC[i] = new NDArray(vC[i]->dup('f')); toDelete.emplace_back(pC[i]); } else pC[i] = vC[i]; if(pC[i]->ordering() != 'f') { auto temp = pA[i]; pA[i] = new NDArray(pB[i]->permute({1,0})); pB[i] = new NDArray(temp ->permute({1,0})); pC[i] = new NDArray(pC[i]->permute({1,0})); toDelete.push_back(pA[i]); toDelete.push_back(pB[i]); toDelete.push_back(pC[i]); M = pA[i]->sizeAt(0); K = pA[i]->sizeAt(1); N = pB[i]->sizeAt(1); } NDArray::prepareSpecialUse ({pC[i]}, {pA[i], pB[i]}); NDArray::registerSpecialUse({pC[i]}, {pA[i], pB[i]}); } NDArray::prepareSpecialUse ({}, {alphas, betas}); NDArray::registerSpecialUse({}, {alphas, betas}); std::vector pAbuffs(bS), pBbuffs(bS), pCbuffs(bS); for(int i = 0; i < bS; ++i) { pAbuffs[i] = pA[i]->specialBuffer(); pBbuffs[i] = pB[i]->specialBuffer(); pCbuffs[i] = pC[i]->specialBuffer(); } sd::LaunchContext* context = vA[0]->getContext(); PointersManager manager(context, "helpers::bgemm cuda"); const void** aBuffers = reinterpret_cast(manager.replicatePointer(pAbuffs.data(), bS * sizeof(void*))); const void** bBuffers = reinterpret_cast(manager.replicatePointer(pBbuffs.data(), bS * sizeof(void*))); void** cBuffers = reinterpret_cast(manager.replicatePointer(pCbuffs.data(), bS * sizeof(void*))); // const auto aOrder = pA->ordering(); // const auto bOrder = pB->ordering(); // const bool transA = aOrder != 'f'; // const bool transB = bOrder != 'f'; const cublasOperation_t transAblas = transA == 112 ? CUBLAS_OP_T : CUBLAS_OP_N; const cublasOperation_t transBblas = transB == 112 ? CUBLAS_OP_T : CUBLAS_OP_N; // const int lda = aOrder == 'f' ? M : K; // const int ldb = bOrder == 'f' ? K : N; // const int ldc = M; // cOrder == 'f' ? M : N; const auto aType = pA[0]->dataType(); const auto bType = pB[0]->dataType(); const auto cType = pC[0]->dataType(); std::lock_guard lock(*LaunchContext::deviceMutex()); auto handle = reinterpret_cast(context->getCublasHandle()); auto stream = context->getCudaStream(); auto status = cublasSetStream_v2(*handle, *stream); if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status); const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC); // choose appropriate cuda gemm api depending on data types if(ABC && aType == DataType::DOUBLE) { double alpha = alphas->e(0); double beta = betas->e(0); status = cublasDgemmBatched(*handle, transAblas, transBblas, M, N, K, &alpha, (const double**)aBuffers, lda, (const double**)bBuffers, ldb, &beta, (double**)cBuffers, ldc, bS); } else if(ABC && aType == DataType::FLOAT32) { float alpha = alphas->e(0); float beta = betas->e(0); status = cublasSgemmBatched(*handle, transAblas, transBblas, M, N, K, &alpha, (const float**)aBuffers, lda, (const float**)bBuffers, ldb, &beta, (float**)cBuffers, ldc, bS); } else if(ABC && aType == DataType::HALF) { __half alpha = alphas->e(0); __half beta = betas->e(0); status = cublasHgemmBatched(*handle, transAblas, transBblas, M, N, K, &alpha, (const __half**)aBuffers, lda, (const __half**)bBuffers, ldb, &beta, (__half**)cBuffers, ldc, bS); } else if(AB && aType == DataType::INT8 && cType == DataType::FLOAT32) { float alpha = alphas->e(0); float beta = betas->e(0); status = cublasGemmBatchedEx(*handle, transAblas, transBblas, M, N, K, &alpha, aBuffers, CUDA_R_8I, lda, bBuffers, CUDA_R_8I, ldb, &beta, cBuffers, CUDA_R_32F, ldc, bS, CUDA_R_32F, CUBLAS_GEMM_DEFAULT); } else if(AB && aType == DataType::HALF && cType == DataType::FLOAT32) { float alpha = alphas->e(0); float beta = betas->e(0); status = cublasGemmBatchedEx(*handle, transAblas, transBblas, M, N, K, &alpha, aBuffers, CUDA_R_16F, lda, bBuffers, CUDA_R_16F, ldb, &beta, cBuffers, CUDA_R_32F, ldc, bS, CUDA_R_32F, CUBLAS_GEMM_DEFAULT); } else throw std::runtime_error("batched gemm cuda: this mode is not implemented yet !"); if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status); auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult); for(int i = 0; i < bS; ++i) if(vC[i]->ews() != 1) vC[i]->assign(pC[i]); for(int i = toDelete.size() - 1; i >= 0; --i) delete toDelete[i]; } } } }