/******************************************************************************* * Copyright (c) 2020 Konduit, K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include #include #include "../triangular_solve.h" #include "../lup.h" #include "../solve.h" namespace sd { namespace ops { namespace helpers { // --------------------------------------------------------------------------------------------------------------------------------------- // template static void adjointMatrix_(sd::LaunchContext* context, NDArray const* input, NDArray* output) { auto inputPart = input->allTensorsAlongDimension({-2, -1}); auto outputPart = output->allTensorsAlongDimension({-2, -1}); auto rows = input->sizeAt(-2); output->assign(input); auto batchLoop = PRAGMA_THREADS_FOR { for (auto batch = start; batch < stop; batch++) { for (Nd4jLong r = 0; r < rows; r++) { for (Nd4jLong c = 0; c < r; c++) { math::nd4j_swap(outputPart[batch]->r(r, c) , outputPart[batch]->r(c, r)); } } } }; samediff::Threads::parallel_tad(batchLoop, 0, inputPart.size(), 1); } // --------------------------------------------------------------------------------------------------------------------------------------- // template static int solveFunctor_(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool const adjoint, NDArray* output) { // stage 1: LU decomposition batched auto leftOutput = leftInput->ulike(); auto permuShape = rightInput->getShapeAsVector(); permuShape.pop_back(); auto permutations = NDArrayFactory::create('c', permuShape, context); helpers::lu(context, leftInput, &leftOutput, &permutations); auto P = leftInput->ulike(); //permutations batched matrix P.nullify(); // to fill up matricies with zeros auto PPart = P.allTensorsAlongDimension({-2,-1}); auto permutationsPart = permutations.allTensorsAlongDimension({-1}); for (auto batch = 0; batch < permutationsPart.size(); ++batch) { for (Nd4jLong row = 0; row < PPart[batch]->rows(); ++row) { PPart[batch]->r(row, permutationsPart[batch]->t(row)) = T(1.f); } } auto leftLower = leftOutput.dup(); auto rightOutput = rightInput->ulike(); auto rightPermuted = rightOutput.ulike(); MmulHelper::matmul(&P, rightInput, &rightPermuted, 0, 0); ResultSet leftLowerPart = leftLower.allTensorsAlongDimension({-2, -1}); for (auto i = 0; i < leftLowerPart.size(); i++) { for (Nd4jLong r = 0; r < leftLowerPart[i]->rows(); r++) leftLowerPart[i]->r(r,r) = (T)1.f; } // stage 2: triangularSolveFunctor for Lower with given b helpers::triangularSolveFunctor(context, &leftLower, &rightPermuted, true, false, &rightOutput); // stage 3: triangularSolveFunctor for Upper with output of previous stage helpers::triangularSolveFunctor(context, &leftOutput, &rightOutput, false, false, output); return Status::OK(); } // --------------------------------------------------------------------------------------------------------------------------------------- // int solveFunctor(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool const adjoint, NDArray* output) { BUILD_SINGLE_SELECTOR(leftInput->dataType(), return solveFunctor_, (context, leftInput, rightInput, adjoint, output), FLOAT_TYPES); } // --------------------------------------------------------------------------------------------------------------------------------------- // void adjointMatrix(sd::LaunchContext* context, NDArray const* input, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), adjointMatrix_, (context, input, output), FLOAT_TYPES); } // --------------------------------------------------------------------------------------------------------------------------------------- // } } }