/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com), created on 19.11.2018 #include #include #include #include #include using namespace simdOps; namespace functions { namespace reduce3 { //////////////////////////////////////////////////////////////////////// template __global__ void execScalarGeneric(const int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int* allocationPointer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo) { Reduce3::execScalarCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo); } template __global__ void execAllGeneric(const int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { Reduce3::execAllCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets); } //////////////////////////////////////////////////////////////////////// template __global__ void execGeneric(const int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { Reduce3::execCuda(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets); } ////////////////////////////////////////////////////////////////////////// template template __device__ void Reduce3::aggregatePartials(void* vsPartials, Nd4jLong tid, Nd4jLong numItems, void *vextraParams) { // start the shared memory loop on the next power of 2 less // than the block size. If block size is not a power of 2, // accumulate the intermediate sums in the remainder range. auto sPartials = reinterpret_cast(vsPartials); auto extraParams = reinterpret_cast(vextraParams); Nd4jLong floorPow2 = numItems; if (floorPow2 & (floorPow2 - 1)) { while(floorPow2 & (floorPow2 - 1)) floorPow2 &= floorPow2 - 1; if (tid >= floorPow2) sPartials[tid - floorPow2] = OpType::update(sPartials[tid - floorPow2], sPartials[tid], extraParams); __syncthreads(); } for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) { if (tid < activeThreads) sPartials[tid] = OpType::update(sPartials[tid], sPartials[tid + activeThreads], extraParams); __syncthreads(); } } ////////////////////////////////////////////////////////////////////////// template template __device__ void Reduce3::execScalarCuda( void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void* vz, Nd4jLong const* zShapeInfo, int *allocationPointer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo) { auto x = reinterpret_cast(vx); auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ Z extraZ[3]; __shared__ Z sPartials[CUDA_BLOCK_SIZE]; if (threadIdx.x == 0) { extraZ[0] = (Z) 0.0f; extraZ[1] = (Z) 0.0f; if (extraParams != nullptr) extraZ[2] = static_cast(extraParams)[2]; else extraZ[2] = (Z) 0.0f; } __syncthreads(); sPartials[threadIdx.x] = OpType::startingValue(x); Nd4jLong length = shape::length(xShapeInfo); int xEws = shape::elementWiseStride(xShapeInfo); int yEws = shape::elementWiseStride(yShapeInfo); int tid = blockIdx.x * blockDim.x + threadIdx.x; char xOrder = shape::order(xShapeInfo); char yOrder = shape::order(yShapeInfo); if(xOrder == yOrder && (xEws > 0 && yEws > 0) && shape::strideDescendingCAscendingF(xShapeInfo) && shape::strideDescendingCAscendingF(yShapeInfo)) { if (xEws == 1 && yEws == 1) { for(Nd4jLong i = tid; i < length; i+= gridDim.x * blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[i], y[i], extraZ), extraZ); } else { for(Nd4jLong i = tid; i < length; i+= gridDim.x * blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[i * xEws], y[i * yEws], extraZ), extraZ); } } else { sPartials[threadIdx.x] = OpType::startingValue(x); auto threadCount = gridDim.x * blockDim.x; for(Nd4jLong i = tid; i < length; i += threadCount) { auto xOffset = shape::getIndexOffset(i, xShapeInfo); auto yOffset = shape::getIndexOffset(i, yShapeInfo); sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset], y[yOffset], extraZ), extraZ); } } __syncthreads(); aggregatePartials(reinterpret_cast(sPartials), threadIdx.x, sd::math::nd4j_min(blockDim.x, length), extraZ); __syncthreads(); if (gridDim.x > 1) { auto tc = reinterpret_cast(reductionBuffer); __shared__ bool amLast; int rank = shape::rank(xShapeInfo); tid = threadIdx.x; Z *extraBuffer = (Z *) allocationPointer; if (threadIdx.x == 0) { reinterpret_cast(reductionBuffer)[blockIdx.x] = sPartials[0]; extraBuffer[blockIdx.x] = extraZ[0]; extraBuffer[gridDim.x + blockIdx.x] = extraZ[1]; } __threadfence(); __syncthreads(); if (threadIdx.x == 0) { unsigned int ticket = atomicInc(&tc[16384], gridDim.x); amLast = (ticket == gridDim.x - 1); } sPartials[tid] = OpType::startingValue(x); __syncthreads(); if (amLast) { tc[16384] = 0; sPartials[threadIdx.x] = OpType::startingValue(x); // TODO: later probably replace this. Right now we need extraZ sync for CosineSimilarity ONLY if (tid == 0 && extraZ[0] != static_cast(0) && extraZ[1] != static_cast(0)) { extraZ[0] = 0.0; extraZ[1] = 0.0; for (int i = 0; i < gridDim.x; i++) { extraZ[0] += extraBuffer[i]; extraZ[1] += extraBuffer[gridDim.x + i]; } } for (Nd4jLong i = threadIdx.x; i < gridDim.x; i += blockDim.x) sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], static_cast(reductionBuffer)[i], extraZ); __syncthreads(); aggregatePartials(reinterpret_cast(sPartials), threadIdx.x, sd::math::nd4j_min(gridDim.x, blockDim.x), extraZ); __syncthreads(); if (threadIdx.x == 0) z[0] = OpType::postProcess(sPartials[0], length, extraZ); } } else { if (tid == 0) { auto tc = reinterpret_cast(reductionBuffer); tc[16384] = 0; z[0] = OpType::postProcess(sPartials[0], length, extraZ); //printf("Z: [%f]\n", (float) z[0]); } } } ////////////////////////////////////////////////////////////////////////// template template __device__ void Reduce3::transformAll( void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* xTadShapeInfo, Nd4jLong const* xOffsets, Nd4jLong const* yTadShapeInfo, Nd4jLong const* yOffsets) { auto dx = reinterpret_cast(vx); auto dy = reinterpret_cast(vy); auto z = reinterpret_cast(vz); // initialize partials first __shared__ Z sPartials[CUDA_BLOCK_SIZE]; Z startingVal = OpType::startingValue(dx); sPartials[threadIdx.x] = startingVal; auto tempX = reinterpret_cast(sPartials) + blockDim.x; const int maxBlock = blockDim.x; __shared__ Z extraZ[OpType::extraParamsLen > 0 ? OpType::extraParamsLen : 1]; __shared__ int xTadLength; __shared__ int yTadLength; __shared__ int xTads; __shared__ int yTads; //reading initial data if (threadIdx.x == 0) { xTadLength = shape::length(xTadShapeInfo); yTadLength = shape::length(yTadShapeInfo); xTads = shape::length(xShapeInfo) / xTadLength; yTads = shape::length(yShapeInfo) / yTadLength; } __syncthreads(); int limit = xTadLength / maxBlock; if (xTadLength % maxBlock > 0) limit++; for (int r = blockIdx.x; r < xTads; r += blockDim.x * gridDim.x) { auto x = dx + xOffsets[r]; if (threadIdx.x < xTadLength && threadIdx.x < maxBlock) { auto x0 = shape::getIndexOffset(threadIdx.x, xTadShapeInfo); tempX[threadIdx.x] = x[x0]; } __syncthreads(); for (int g = 0; g < yTads; g++) { auto y = dy + yOffsets[g]; int ri = (r * yTads) + g; sPartials[threadIdx.x] = startingVal; if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen) extraZ[threadIdx.x] = startingVal; __syncthreads(); // we might have data too large for single cache block, rendering cache useless though :( for (int t = 0; t < limit; t++) { // we reset tempX IF we have >1 tiles if (t >= 1 || (limit > 1 && g > 0)) if (threadIdx.x + (t * maxBlock) < xTadLength) { auto x0 = shape::getIndexOffset(threadIdx.x + (t * maxBlock), xTadShapeInfo); tempX[threadIdx.x] = x[x0]; } for (int f = threadIdx.x + (t * maxBlock); f < xTadLength && f < threadIdx.x + ((t + 1) * maxBlock); f += blockDim.x * gridDim.x) { auto y0 = shape::getIndexOffset(f, yTadShapeInfo); sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], OpType::opAtomic(tempX[threadIdx.x], y[y0], extraZ), extraZ); } // we MUST step through this block altogether __syncthreads(); } aggregatePartials(reinterpret_cast(sPartials), threadIdx.x, sd::math::nd4j_min(blockDim.x, xTadLength), extraZ); __syncthreads(); if (threadIdx.x == 0) { z[ri] = OpType::postProcess(sPartials[threadIdx.x], xTadLength, extraZ); } __syncthreads(); } } } ////////////////////////////////////////////////////////////////////////// template template __device__ void Reduce3::transform(void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { // FIXME if(shape::isScalar(zShapeInfo)) return; if (yTadOnlyShapeInfo == nullptr) { yTadOnlyShapeInfo = yShapeInfo; // execReduce3TAD case } auto x = reinterpret_cast(vx); auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); Z startingVal = OpType::startingValue(x); __shared__ Z extraZ[OpType::extraParamsLen > 0 ? OpType::extraParamsLen : 1]; __shared__ Z sPartials[CUDA_BLOCK_SIZE]; __shared__ int tadLen; __shared__ Nd4jLong zLen; __shared__ Nd4jLong xTadEws; __shared__ Nd4jLong yTadEws; __shared__ Nd4jLong yTadNum; __shared__ char xTadOrder; __shared__ char yTadOrder; if(threadIdx.x == 0) { tadLen = shape::length(tadOnlyShapeInfo); zLen = shape::length(zShapeInfo); xTadEws = shape::elementWiseStride(tadOnlyShapeInfo); yTadEws = shape::elementWiseStride(yTadOnlyShapeInfo); yTadNum = shape::length(yShapeInfo) / tadLen; xTadOrder = shape::order(tadOnlyShapeInfo); yTadOrder = shape::order(yTadOnlyShapeInfo); } __syncthreads(); sPartials[threadIdx.x] = startingVal; if(xTadEws >= 1 && yTadEws >= 1 && xTadOrder == yTadOrder) { for(int i = blockIdx.x; i < zLen; i+= gridDim.x) { Nd4jLong xOffset = tadOffsets[i]; Nd4jLong yOffset = yTadNum == 1 ? 0 : yTadOffsets[i]; if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen) extraZ[threadIdx.x] = startingVal; __syncthreads(); for (int j = threadIdx.x; j < tadLen; j += blockDim.x) { Nd4jLong xOffset2 = xOffset + j*xTadEws; Nd4jLong yOffset2 = yOffset + j*yTadEws; sPartials[threadIdx.x] = j < blockDim.x ? OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ) : OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ), extraZ); } __syncthreads(); aggregatePartials(reinterpret_cast(sPartials), threadIdx.x, sd::math::nd4j_min(blockDim.x, tadLen), extraZ); __syncthreads(); if (threadIdx.x == 0) z[i] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraZ); __syncthreads(); } } else { for(int i = blockIdx.x; i < zLen; i += gridDim.x) { Nd4jLong xOffset = tadOffsets[i]; Nd4jLong yOffset = yTadNum == 1 ? 0 : yTadOffsets[i]; if (OpType::extraParamsLen > 0 && threadIdx.x < OpType::extraParamsLen) extraZ[threadIdx.x] = startingVal; __syncthreads(); for (int j = threadIdx.x; j < tadLen; j += blockDim.x) { Nd4jLong xOffset2 = xOffset + shape::getIndexOffset(j, tadOnlyShapeInfo); Nd4jLong yOffset2 = yOffset + shape::getIndexOffset(j, yTadOnlyShapeInfo); sPartials[threadIdx.x] = j < blockDim.x ? OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ) : OpType::update(sPartials[threadIdx.x], OpType::opAtomic(x[xOffset2], y[yOffset2], extraZ), extraZ); } __syncthreads(); aggregatePartials(reinterpret_cast(sPartials), threadIdx.x, sd::math::nd4j_min(blockDim.x, tadLen), extraZ); __syncthreads(); if (threadIdx.x == 0) z[i] = OpType::postProcess(sPartials[threadIdx.x], tadLen, extraZ); __syncthreads(); } } } ////////////////////////////////////////////////////////////////////////// template __device__ void Reduce3::execCuda(const int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { DISPATCH_BY_OPNUM_TT(transform, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets), REDUCE3_OPS); } ////////////////////////////////////////////////////////////////////////// template __device__ void Reduce3::execAllCuda( const int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { DISPATCH_BY_OPNUM_TT(transformAll, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets), REDUCE3_OPS); } ////////////////////////////////////////////////////////////////////////// template __device__ void Reduce3::execScalarCuda(const int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int * allocationPointer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo) { DISPATCH_BY_OPNUM_TT(execScalarCuda, PARAMS(vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo), REDUCE3_OPS); } //////////////////////////////////////////////////////////////////////// template __host__ void Reduce3::exec(dim3 launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { execGeneric<<>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets); sd::DebugHelper::checkErrorCode(stream, "reduce3exec(...) failed"); } //////////////////////////////////////////////////////////////////////// template __host__ void Reduce3::execAll(dim3 launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationPointer, Nd4jLong const* tadOnlyShapeInfo, Nd4jLong const* tadOffsets, Nd4jLong const* yTadOnlyShapeInfo, Nd4jLong const* yTadOffsets) { execAllGeneric<<>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationPointer, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets); sd::DebugHelper::checkErrorCode(stream, "execAllGeneric(...) failed"); } //////////////////////////////////////////////////////////////////////// template __host__ void Reduce3::execScalar(dim3 launchDims, cudaStream_t *stream, int opNum, void const* vx, Nd4jLong const* xShapeInfo, void const* vy, Nd4jLong const* yShapeInfo, void *extraParams, void *vz, Nd4jLong const* zShapeInfo, int* allocationPointer, void *reductionBuffer, Nd4jLong const* tadOnlyShapeInfo) { execScalarGeneric<<>>(opNum, vx, xShapeInfo, vy, yShapeInfo, extraParams, vz, zShapeInfo, allocationPointer, reductionBuffer, tadOnlyShapeInfo); sd::DebugHelper::checkErrorCode(stream, "execScalarGeneric(...) failed"); } //BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT Reduce3, , LIBND4J_TYPES, FLOAT_TYPES); } }