/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include namespace nd4j { namespace ops { namespace helpers { template void _CUDA_G flattenKernel(void **xBuffers, Nd4jLong **xShapeInfos, Nd4jLong *offsets, Nd4jLong numInputs, void *zBuffer, Nd4jLong *zShapeInfo, char order) { Nd4jLong xCoord[MAX_RANK]; // each block of threads works on 1 input array for (Nd4jLong e = blockIdx.x; e < numInputs; e += gridDim.x) { auto z = reinterpret_cast(zBuffer) + offsets[e]; auto xBuffer = reinterpret_cast(xBuffers[e]); auto xShapeInfo = xShapeInfos[e]; auto xShape = shape::shapeOf(xShapeInfo); auto xStride = shape::stride(xShapeInfo); auto xRank = shape::rank(xShapeInfo); auto xLength = shape::length(xShapeInfo); // each element of this input array has own place within common output array for (uint i = threadIdx.x; i < xLength; i += blockDim.x) { shape::index2coords(xRank, xShape, i, xLength, xCoord, order); auto xOffset = shape::getOffset(0, xShape, xStride, xCoord, xRank); z[i] = xBuffer[xOffset]; } } } template void flatten_(nd4j::LaunchContext *context, std::vector &inputs, NDArray *output, char order) { PointersManager pm(context, "flatten"); std::vector hdBuffers(inputs.size()); std::vector hOffsets(inputs.size()); std::vector hdShapes(inputs.size()); Nd4jLong cOffset = 0; // calculating offsets in output for (int e = 0; e < inputs.size(); e++) { hOffsets[e] = cOffset; cOffset += inputs[e]->lengthOf(); hdBuffers[e] = inputs[e]->specialBuffer(); hdShapes[e] = inputs[e]->specialShapeInfo(); } // copying pointers to device auto dBuffers = (void **) pm.replicatePointer(hdBuffers.data(), inputs.size() * sizeof(void*)); auto dShapes = (Nd4jLong **)pm.replicatePointer(hdShapes.data(), inputs.size() * sizeof(Nd4jLong*)); auto dOffsets = (Nd4jLong *) pm.replicatePointer(hOffsets.data(), inputs.size() * sizeof(Nd4jLong)); flattenKernel<<<256, 512, 8192, *context->getCudaStream()>>>(dBuffers, dShapes, dOffsets, inputs.size(), output->getSpecialBuffer(), output->getSpecialShapeInfo(), order); pm.synchronize(); } void flatten(nd4j::LaunchContext *context, std::vector &inputs, NDArray *output, char order) { // FIXME: we want NDArrayFactory::prepareSpecialUse here eventually for (auto v:inputs) v->syncToDevice(); BUILD_SINGLE_SELECTOR(output->dataType(), flatten_, (context, inputs, output, order), LIBND4J_TYPES); NDArray::registerSpecialUse({output}, {}); } } } }