/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// Created by george@skymind.io on 11/13/2018.
//

#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/axis.h>
namespace nd4j {
namespace ops {
#if NOT_EXCLUDED(OP_reduce_logsumexp)

    CUSTOM_OP_IMPL(reduce_logsumexp, 1, 1, false, 0, 0) {
        auto input = INPUT_VARIABLE(0);
        auto output = OUTPUT_VARIABLE(0);
        std::vector<int> axes;// = *block.getIArguments();
        if (block.width() > 1) {
            auto axisVector = INPUT_VARIABLE(1);
            helpers::adjustAxis(input->rankOf(), axisVector, axes );
        }
        else if (block.getIArguments()->size() > 0) {
            axes = *block.getIArguments();
        }

        for(const auto& item : axes)
            REQUIRE_TRUE(item >= -input->shapeInfo()[0] && item <input->shapeInfo()[0], 0, "REDUCE_LOGSUMEXP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item);

        const bool keepDims = block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
        Nd4jLong maxI = input->argMax();
        auto maxVals = input->e(maxI);
        //void* whereMax = (void*)();
        auto internal = (*input);
        internal -= maxVals;
        internal.applyTransform(transform::Exp, nullptr, nullptr);
        internal.reduceAlongDimension(reduce::Sum, output, axes, keepDims, false); //, (void*)&maxVals);
        output->applyTransform(transform::Log, nullptr, nullptr);
        (*output) += maxVals;
        return ND4J_STATUS_OK;
    }
    DECLARE_TYPES(reduce_logsumexp) {
        getOpDescriptor()
        -> setAllowedInputTypes({ALL_INTS, ALL_FLOATS})
        -> setAllowedOutputTypes({ALL_FLOATS});
    }
    DECLARE_SHAPE_FN(reduce_logsumexp) {    

        const bool keepDims = block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false;
        auto input = INPUT_VARIABLE(0);

        std::vector<int> axes; // = *block.getIArguments();
        if (block.width() > 1) {
            auto axisVector = INPUT_VARIABLE(1);
            helpers::adjustAxis(input->rankOf(), axisVector, axes );
        }
        else if (block.getIArguments()->size() > 0) {
            axes = *block.getIArguments();
        }

        Nd4jLong* outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(inputShape->at(0)), axes, inputShape->at(0), keepDims, false, block.getWorkspace());

        return SHAPELIST(outShapeInfo);
    }
#endif 
}
}