/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include #include #include namespace nd4j { namespace ops { namespace helpers { // template // __global__ static void scatterCuda(const int opCode, const int numOfSubArrs, // void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets, // void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets, // const int* indexes, unsigned int arrLenX, unsigned int arrLenY) { // __shared__ T *x, *y; // if (locking) { // for (int e = 0; e < numOfSubArrs; e++) { // const auto xIndex = indexes[e]; // const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x; // if (!isOwner) // continue; // if (threadIdx.x == 0) { // x = reinterpret_cast(vx) + xOffsets[xIndex]; // y = reinterpret_cast(vy) + yOffsets[e]; // } // __syncthreads(); // for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) { // const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX); // const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY); // switch (opCode) { // case pairwise::Add: // x[xOffset] += y[yOffset]; // break; // case pairwise::Subtract: // x[xOffset] -= y[yOffset]; // break; // case pairwise::Multiply: // x[xOffset] *= y[yOffset]; // break; // case pairwise::Divide: // x[xOffset] /= y[yOffset]; // break; // case pairwise::ReverseSubtract: // x[xOffset] = y[yOffset] - x[xOffset]; // break; // case pairwise::ReverseDivide: // x[xOffset] = y[yOffset] / x[xOffset]; // break; // case pairwise::CopyPws: // x[xOffset] = y[yOffset]; // break; // default: // continue; // } // } // __syncthreads(); // } // } else { // for (int e = blockIdx.x; e < numOfSubArrs; e+= gridDim.x) { // if (threadIdx.x == 0) { // const auto xIndex = indexes[e]; // x = reinterpret_cast(vx) + xOffsets[xIndex]; // y = reinterpret_cast(vy) + yOffsets[e]; // } // __syncthreads(); // for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) { // const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX); // const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY); // switch (opCode) { // case pairwise::Add: // x[xOffset] += y[yOffset]; // break; // case pairwise::Subtract: // x[xOffset] -= y[yOffset]; // break; // case pairwise::Multiply: // x[xOffset] *= y[yOffset]; // break; // case pairwise::Divide: // x[xOffset] /= y[yOffset]; // break; // case pairwise::ReverseSubtract: // x[xOffset] = y[yOffset] - x[xOffset]; // break; // case pairwise::ReverseDivide: // x[xOffset] = y[yOffset] / x[xOffset]; // break; // case pairwise::CopyPws: // x[xOffset] = y[yOffset]; // break; // default: // continue; // } // } // __syncthreads(); // } // } // } // template // void scatter_(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { // std::vector dims = {0}; // auto inverted = ShapeUtils::evalDimsToExclude(output.rankOf(), dims); // auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), inverted); // auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), inverted); // auto psX = packX.specialShapeInfo(); // auto psY = packY.specialShapeInfo(); // PointersManager manager(context, "scatter"); // auto poX = packX.specialOffsets(); // auto poY = packY.specialOffsets(); // NDArray::prepareSpecialUse({&output}, {&updates, &indices}); // unsigned int tadLengthX = shape::length(packX.primaryShapeInfo()); // unsigned int tadLengthY = shape::length(packY.primaryShapeInfo()); // if (tadLengthX != tadLengthY) // throw std::runtime_error("scatter: Lengths of TADs must be equal"); // auto blockSize = nd4j::math::nd4j_max(32, nd4j::math::nd4j_min(tadLengthX, 1024)); // if (lock) // scatterCuda<<<512, blockSize, 1024, *context->getCudaStream()>>>(op, indices.lengthOf(), output.getSpecialBuffer(), psX, poX, updates.getSpecialBuffer(), psY, poY, reinterpret_cast(indices.getSpecialBuffer()), tadLengthX, tadLengthY); // else // scatterCuda<<<512, blockSize, 1024, *context->getCudaStream()>>>(op, indices.lengthOf(), output.getSpecialBuffer(), psX, poX, updates.getSpecialBuffer(), psY, poY, reinterpret_cast(indices.getSpecialBuffer()), tadLengthX, tadLengthY); // NDArray::registerSpecialUse({&output}, {&updates, &indices}); // manager.synchronize(); // } /////////////////////////////////////////////////////////////////// // x - indices, y - updates, z - input/output template __global__ static void scatterLockCuda(const int opCode, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets, void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const Nd4jLong xLen, const Nd4jLong yTadLen, const Nd4jLong zTadLen) { const auto x = reinterpret_cast(vx); const auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ bool vectorCase; if(threadIdx.x == 0) vectorCase = yTadLen == xLen && shape::rank(xShapeInfo) <= 1; __syncthreads(); for (int e = 0; e < xLen; e++) { const Nd4jLong zIndex = x[shape::getIndexOffset(e, xShapeInfo, xLen)]; const bool isOwner = zIndex < gridDim.x ? blockIdx.x == zIndex : blockIdx.x == zIndex % gridDim.x; if (!isOwner) continue; if(vectorCase) { // means z_rank = 1 and might be yTadLen != zTadLen in this case if(threadIdx.x != 0) continue; const auto yOffset = shape::getIndexOffset(e, yTadShapeInfo, yTadLen); const auto zOffset = shape::getIndexOffset(zIndex, zTadShapeInfo, zTadLen); switch (opCode) { case pairwise::Add: z[zOffset] += y[yOffset]; break; case pairwise::Subtract: z[zOffset] -= y[yOffset]; break; case pairwise::Multiply: z[zOffset] *= y[yOffset]; break; case pairwise::Divide: z[zOffset] /= y[yOffset]; break; case pairwise::ReverseSubtract: z[zOffset] = y[yOffset] - z[zOffset]; break; case pairwise::ReverseDivide: z[zOffset] = y[yOffset] / z[zOffset]; break; case pairwise::CopyPws: z[zOffset] = y[yOffset]; break; case pairwise::MaxPairwise: if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset]; break; case pairwise::MinPairwise: if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset]; break; default: continue; } } else { // yTadLen == zTadLen in this case const Y* yTad = y + yOffsets[e]; Y* zTad = z + zOffsets[zIndex]; for (Nd4jLong i = threadIdx.x; i < zTadLen; i += blockDim.x) { const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo, zTadLen); const auto zOffset = shape::getIndexOffset(i, zTadShapeInfo, zTadLen); switch (opCode) { case pairwise::Add: zTad[zOffset] += yTad[yOffset]; break; case pairwise::Subtract: zTad[zOffset] -= yTad[yOffset]; break; case pairwise::Multiply: zTad[zOffset] *= yTad[yOffset]; break; case pairwise::Divide: zTad[zOffset] /= yTad[yOffset]; break; case pairwise::ReverseSubtract: zTad[zOffset] = yTad[yOffset] - zTad[zOffset]; break; case pairwise::ReverseDivide: zTad[zOffset] = yTad[yOffset] / zTad[zOffset]; break; case pairwise::CopyPws: zTad[zOffset] = yTad[yOffset]; break; case pairwise::MaxPairwise: if(zTad[zOffset] < yTad[yOffset]) zTad[zOffset] = yTad[yOffset]; break; case pairwise::MinPairwise: if(zTad[zOffset] > yTad[yOffset]) zTad[zOffset] = yTad[yOffset]; break; default: continue; } } } } } /////////////////////////////////////////////////////////////////// template static void scatterLockCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int opCode, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets, void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const Nd4jLong xLen, const Nd4jLong yTadLen, const Nd4jLong zTadLen) { scatterLockCuda<<>>(opCode, vx, xShapeInfo, vy, yTadShapeInfo, yOffsets, vz, zTadShapeInfo, zOffsets, xLen, yTadLen, zTadLen); } /////////////////////////////////////////////////////////////////// // x - indices, y - updates, z - input/output template __global__ static void scatterCuda(const int opCode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { const auto x = reinterpret_cast(vx); const auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ int xRank, yRank, zRank; __shared__ Nd4jLong yLen, totalThreads, *coord; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; coord = reinterpret_cast(shmem); yLen = shape::length(yShapeInfo); totalThreads = gridDim.x * blockDim.x; xRank = shape::rank(xShapeInfo); yRank = shape::rank(yShapeInfo); zRank = shape::rank(zShapeInfo); } __syncthreads(); auto xCoord = coord + threadIdx.x * (xRank + yRank + zRank); auto yCoord = xCoord + xRank; auto zCoord = yCoord + yRank; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < yLen; i += totalThreads) { shape::index2coords(yRank, shape::shapeOf(const_cast(yShapeInfo)), i, yLen, yCoord); for (uint j = 0; j < xRank; ++j) xCoord[j] = yCoord[j]; const auto xOffset = shape::getOffset(0, shape::shapeOf(const_cast(xShapeInfo)), shape::stride(const_cast(xShapeInfo)), xCoord, xRank); zCoord[0] = x[xOffset]; for (uint j = 0; j < yRank - xRank; ++j) zCoord[j + 1] = yCoord[xRank + j]; const auto yOffset = shape::getOffset(0, shape::shapeOf(const_cast(yShapeInfo)), shape::stride(const_cast(yShapeInfo)), yCoord, yRank); const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast(zShapeInfo)), shape::stride(const_cast(zShapeInfo)), zCoord, zRank); switch (opCode) { case pairwise::Add: z[zOffset] += y[yOffset]; break; case pairwise::Subtract: z[zOffset] -= y[yOffset]; break; case pairwise::Multiply: z[zOffset] *= y[yOffset]; break; case pairwise::Divide: z[zOffset] /= y[yOffset]; break; case pairwise::ReverseSubtract: z[zOffset] = y[yOffset] - z[zOffset]; break; case pairwise::ReverseDivide: z[zOffset] = y[yOffset] / z[zOffset]; break; case pairwise::CopyPws: z[zOffset] = y[yOffset]; break; case pairwise::MaxPairwise: if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset]; break; case pairwise::MinPairwise: if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset]; break; default: continue; } } } /////////////////////////////////////////////////////////////////// template static void scatterCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int opCode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { scatterCuda<<>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// void scatter(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { PointersManager manager(context, "scatter"); NDArray::prepareSpecialUse({&output}, {&updates, &indices}); if(lock) { const int xRank = indices.rankOf(); std::vector zTadDims = ShapeUtils::evalDimsToExclude(output.rankOf(), {0}); int sizeOfUpdDims = xRank; if(output.rankOf() == updates.rankOf() && indices.isVector()) sizeOfUpdDims = 1; std::vector yTadDims(sizeOfUpdDims); std::iota(yTadDims.begin(), yTadDims.end(), 0); auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), ShapeUtils::evalDimsToExclude(updates.rankOf(), yTadDims)); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), zTadDims); const Nd4jLong zTadLen = shape::length(packZ.primaryShapeInfo()); const Nd4jLong yTadLen = shape::length(packY.primaryShapeInfo()); const auto threadsPerBlock = nd4j::math::nd4j_max(32, nd4j::math::nd4j_min(zTadLen, 1024)); const auto blocksPerGrid = indices.lengthOf(); const auto xType = indices.dataType(); const auto yType = updates.dataType(); BUILD_DOUBLE_SELECTOR(xType, yType, scatterLockCudaLauncher, (blocksPerGrid, threadsPerBlock, 1024, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), packY.specialShapeInfo(), packY.specialOffsets(), output.getSpecialBuffer(), packZ.specialShapeInfo(), packZ.specialOffsets(), indices.lengthOf(), yTadLen, zTadLen), INDEXING_TYPES, GENERIC_NUMERIC_TYPES); } else { const int threadsPerBlock = MAX_NUM_THREADS / 8; const int blocksPerGrid = (updates.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = 8 * threadsPerBlock * (indices.rankOf() + updates.rankOf() + output.rankOf()) + 128; const auto xType = indices.dataType(); const auto yType = updates.dataType(); BUILD_DOUBLE_SELECTOR(xType, yType, scatterCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo()), INDEXING_TYPES, GENERIC_NUMERIC_TYPES); } NDArray::registerSpecialUse({&output}, {&updates, &indices}); manager.synchronize(); } /////////////////////////////////////////////////////////////////// // x - indices, y - updates, z - output template __global__ static void scatterNDLockCuda(const int opCode, const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets, void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const Nd4jLong *zShapeInfo, const Nd4jLong numOfXTads, const Nd4jLong numOfZTads, const Nd4jLong yTadLen) { // zTadLen == yTadLen if numOfZTads > 1, in opposite case z and y are vectors // numOfXTads == numOfYTads if numOfZTads > 1, in opposite case z and y are vectors const auto x = reinterpret_cast(vx); const auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ Nd4jLong *zTadCoords; __shared__ int xLastDim; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; zTadCoords = reinterpret_cast(shmem); xLastDim = xTadShapeInfo[1]; // xTad has rank = 1 always } __syncthreads(); Nd4jLong* zTadCoordsPerThread = zTadCoords + threadIdx.x * xLastDim; for (Nd4jLong i = 0; i < numOfXTads; ++i) { const X* xTad = x + xOffsets[i]; for (uint k = 0; k < xLastDim; ++k) zTadCoordsPerThread[k] = xTad[shape::getIndexOffset(k, xTadShapeInfo, xLastDim)]; const auto zTadIndex = shape::coords2index(xLastDim, shape::shapeOf(const_cast(zShapeInfo)), zTadCoordsPerThread); const bool isOwner = zTadIndex < gridDim.x ? blockIdx.x == zTadIndex : blockIdx.x == zTadIndex % gridDim.x; if(!isOwner) continue; if(numOfZTads == 1) { // yTadLen == numOfXTads in this case if(threadIdx.x != 0) continue; const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo, yTadLen); const auto zOffset = shape::getIndexOffset(zTadIndex, zTadShapeInfo, yTadLen); switch (opCode) { case pairwise::Add: z[zOffset] += y[yOffset]; break; case pairwise::Subtract: z[zOffset] -= y[yOffset]; break; case pairwise::Multiply: z[zOffset] *= y[yOffset]; break; case pairwise::Divide: z[zOffset] /= y[yOffset]; break; case pairwise::ReverseSubtract: z[zOffset] = y[yOffset] - z[zOffset]; break; case pairwise::ReverseDivide: z[zOffset] = y[yOffset] / z[zOffset]; break; case pairwise::CopyPws: z[zOffset] = y[yOffset]; break; case pairwise::MaxPairwise: if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset]; break; case pairwise::MinPairwise: if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset]; break; default: continue; } } else { const auto yTad = y + yOffsets[i]; const auto zTad = z + zOffsets[zTadIndex]; for (Nd4jLong j = threadIdx.x; j < yTadLen; j += blockDim.x) { const auto yOffset = shape::getIndexOffset(j, yTadShapeInfo, yTadLen); const auto zOffset = shape::getIndexOffset(j, zTadShapeInfo, yTadLen); switch (opCode) { case pairwise::Add: zTad[zOffset] += yTad[yOffset]; break; case pairwise::Subtract: zTad[zOffset] -= yTad[yOffset]; break; case pairwise::Multiply: zTad[zOffset] *= yTad[yOffset]; break; case pairwise::Divide: zTad[zOffset] /= yTad[yOffset]; break; case pairwise::ReverseSubtract: zTad[zOffset] = yTad[yOffset] - zTad[zOffset]; break; case pairwise::ReverseDivide: zTad[zOffset] = yTad[yOffset] / zTad[zOffset]; break; case pairwise::CopyPws: zTad[zOffset] = yTad[yOffset]; break; case pairwise::MaxPairwise: if(zTad[zOffset] < yTad[yOffset]) zTad[zOffset] = yTad[yOffset]; break; case pairwise::MinPairwise: if(zTad[zOffset] > yTad[yOffset]) zTad[zOffset] = yTad[yOffset]; break; default: continue; } } } } } /////////////////////////////////////////////////////////////////// template static void scatterNDLockCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int opCode, const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets, void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const Nd4jLong *zShapeInfo, const Nd4jLong numOfXTads, const Nd4jLong numOfZTads, const Nd4jLong zTadLen) { scatterNDLockCuda<<>>(opCode, vx, xTadShapeInfo, xOffsets, vy, yTadShapeInfo, yOffsets, vz, zTadShapeInfo, zOffsets, zShapeInfo, numOfXTads, numOfZTads, zTadLen); } /////////////////////////////////////////////////////////////////// // x - indices, y - updates, z - output template __global__ static void scatterNDCuda(const int opCode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { const auto x = reinterpret_cast(vx); const auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ int xRank, yRank, zRank, xLastDim; __shared__ Nd4jLong yLen, totalThreads, *coord; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; coord = reinterpret_cast(shmem); yLen = shape::length(yShapeInfo); totalThreads = gridDim.x * blockDim.x; xRank = shape::rank(xShapeInfo); yRank = shape::rank(yShapeInfo); zRank = shape::rank(zShapeInfo); xLastDim = xShapeInfo[xRank]; } __syncthreads(); auto xCoord = coord + threadIdx.x * (xRank + yRank + zRank); auto yCoord = xCoord + xRank; auto zCoord = yCoord + yRank; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < yLen; i += totalThreads) { shape::index2coords(yRank, shape::shapeOf(const_cast(yShapeInfo)), i, yLen, yCoord); for (uint j = 0; j < xRank - 1; ++j) xCoord[j] = yCoord[j]; for (uint j = 0; j < xLastDim; ++j) { xCoord[xRank - 1] = j; const auto xOffset = shape::getOffset(0, shape::shapeOf(const_cast(xShapeInfo)), shape::stride(const_cast(xShapeInfo)), xCoord, xRank); zCoord[j] = x[xOffset]; } for (uint j = xLastDim; j < zRank; ++j) zCoord[j] = yCoord[yRank - zRank + j]; const auto yOffset = shape::getOffset(0, shape::shapeOf(const_cast(yShapeInfo)), shape::stride(const_cast(yShapeInfo)), yCoord, yRank); const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast(zShapeInfo)), shape::stride(const_cast(zShapeInfo)), zCoord, zRank); switch (opCode) { case pairwise::Add: z[zOffset] += y[yOffset]; break; case pairwise::Subtract: z[zOffset] -= y[yOffset]; break; case pairwise::Multiply: z[zOffset] *= y[yOffset]; break; case pairwise::Divide: z[zOffset] /= y[yOffset]; break; case pairwise::ReverseSubtract: z[zOffset] = y[yOffset] - z[zOffset]; break; case pairwise::ReverseDivide: z[zOffset] = y[yOffset] / z[zOffset]; break; case pairwise::CopyPws: z[zOffset] = y[yOffset]; break; case pairwise::MaxPairwise: if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset]; break; case pairwise::MinPairwise: if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset]; break; default: continue; } } } /////////////////////////////////////////////////////////////////// template static void scatterNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int opCode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { scatterNDCuda<<>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// void scatterND(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { const int xRank = indices.rankOf(); const int yRank = updates.rankOf(); const int zRank = output.rankOf(); PointersManager manager(context, "scatterND"); NDArray::prepareSpecialUse({&output}, {&updates, &indices}); if(lock) { const int xLastDim = indices.sizeAt(-1); // y_tad and z_tad have the same shape std::vector yTadDims(zRank - xLastDim), zTadDims(zRank - xLastDim); for (int j = 0, i = zTadDims.size() - 1; i >=0 ; --i, ++j) { yTadDims[i] = yRank - 1 - j; zTadDims[i] = zRank - 1 - j; } auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(indices.getShapeInfo(), {xRank - 1}); auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), yTadDims); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), zTadDims); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = packZ.numberOfTads(); const int sharedMem = 8 * threadsPerBlock * xLastDim + 128; const auto xType = indices.dataType(); const auto yType = updates.dataType(); BUILD_DOUBLE_SELECTOR(xType, yType, scatterNDLockCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), packX.specialShapeInfo(), packX.specialOffsets(), updates.getSpecialBuffer(), packY.specialShapeInfo(), packY.specialOffsets(), output.getSpecialBuffer(), packZ.specialShapeInfo(), packZ.specialOffsets(), output.getSpecialShapeInfo(), packX.numberOfTads(), packZ.numberOfTads(), shape::length(packY.primaryShapeInfo())), INDEXING_TYPES, GENERIC_NUMERIC_TYPES); } else { const int threadsPerBlock = MAX_NUM_THREADS / 8; const int blocksPerGrid = (updates.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = 8 * threadsPerBlock * (xRank + yRank + zRank) + 128; const auto xType = indices.dataType(); const auto yType = updates.dataType(); BUILD_DOUBLE_SELECTOR(xType, yType, scatterNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo()), INDEXING_TYPES, GENERIC_NUMERIC_TYPES); } NDArray::registerSpecialUse({&output}, {&updates, &indices}); manager.synchronize(); } /////////////////////////////////////////////////////////////////// template __global__ void scatterForLossCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { const auto x = reinterpret_cast(vx); auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ Nd4jLong xLen, *sharedMem; __shared__ int xRank; // xRank = zRank, yRank = xRank + 1 if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); xLen = shape::length(xShapeInfo); xRank = shape::rank(xShapeInfo); } __syncthreads(); const auto xInd = threadIdx.x + blockIdx.x * blockDim.x; if(xInd >= xLen) return; auto coords = sharedMem + threadIdx.x * (xRank + 1); shape::index2coords(xRank, xShapeInfo + 1, xInd, xLen, coords); // y last coordinate coords[xRank] = x[shape::getOffset(0, xShapeInfo + 1, xShapeInfo + xRank + 1, coords, xRank)]; const auto yOffset = shape::getOffset(0, yShapeInfo + 1, yShapeInfo + xRank + 2, coords, xRank + 1); if(z == nullptr) { // gradient calculation y[yOffset] -= 1.f; } else { z[shape::getOffset(0, zShapeInfo + 1, zShapeInfo + xRank + 1, coords, xRank)] = y[yOffset]; } } /////////////////////////////////////////////////////////////////// template static void scatterForLossCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong* xShapeInfo, void *vy, const Nd4jLong* yShapeInfo, void *vz, const Nd4jLong* zShapeInfo) { scatterForLossCuda<<>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// void scatterForLoss(nd4j::LaunchContext* context, const NDArray& indices, NDArray& updates, NDArray& output, const bool calcGrad) { // shapes of indices and output must be the same // shape of indices should be the same as updates shape with last dimension excluded, for example if updates is {a,b,c} then indices should be {a,b} PointersManager manager(context, "scatterForLoss"); const int threadsPerBlock = MAX_NUM_THREADS / 2; const int blocksPerGrid = (indices.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = updates.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128; if(calcGrad) { NDArray::prepareSpecialUse({&updates}, {&indices}); BUILD_DOUBLE_SELECTOR(indices.dataType(), updates.dataType(), scatterForLossCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.specialBuffer(), updates.specialShapeInfo(), nullptr, nullptr), INDEXING_TYPES, FLOAT_TYPES); NDArray::registerSpecialUse({&updates}, {&indices}); } else { NDArray::prepareSpecialUse({&output}, {&indices, &updates}); BUILD_DOUBLE_SELECTOR(indices.dataType(), updates.dataType(), scatterForLossCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), INDEXING_TYPES, FLOAT_TYPES); NDArray::registerSpecialUse({&output}, {&indices, &updates}); } manager.synchronize(); } } } } // PointersManager manager(&context, "NativeOps::concat"); // PointersManager::printDevContentOnDev(vx, 2); // PointersManager::printDevContentOnDev(xShapeInfo, 8); // PointersManager::printDevContentOnDev(vy, 8); // PointersManager::printDevContentOnDev(yShapeInfo, 8); // PointersManager::printDevContentOnDev(zShapeInfo, 8); // manager.printDevContentOnHost(indices.getSpecialBuffer(), indices.lengthOf()); // manager.printDevContentOnHost(indices.getSpecialShapeInfo(), shape::shapeInfoLength(indices.rankOf())); // manager.printDevContentOnHost(updates.getSpecialBuffer(), updates.lengthOf()); // manager.printDevContentOnHost(updates.getSpecialShapeInfo(), shape::shapeInfoLength(updates.rankOf())); // manager.printDevContentOnHost(output.getSpecialShapeInfo(), shape::shapeInfoLength(output.rankOf())); // printf("!!!!!!!\n"); // manager.printDevContentOnHost(packX.specialShapeInfo(), 2*shape::rank(packX.primaryShapeInfo()) + 4); // manager.printDevContentOnHost(packX.specialOffsets(), packX.numberOfTads()); // manager.printDevContentOnHost(packY.specialShapeInfo(), 2*shape::rank(packY.primaryShapeInfo()) + 4); // manager.printDevContentOnHost(packY.specialOffsets(), packY.numberOfTads()); // manager.printDevContentOnHost(packZ.specialShapeInfo(), 2*shape::rank(packZ.primaryShapeInfo()) + 4); // manager.printDevContentOnHost(packZ.specialOffsets(), packZ.numberOfTads()); // printf("dddddddd\n"); // shape::printShapeInfoLinear(packY.primaryShapeInfo());