/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author saudet // @author raver119@gmail.com // #include #include #include #include #include "mkldnnUtils.h" #include #include using namespace mkldnn; namespace nd4j { namespace ops { namespace platforms { PLATFORM_IMPL(batchnorm_new) { auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray *gamma = nullptr; NDArray *beta = nullptr; auto output = OUTPUT_VARIABLE(0); const bool applyScale = (bool) INT_ARG(0); const bool applyOffset = (bool) INT_ARG(1); const double epsilon = T_ARG(0); if (applyScale) gamma = INPUT_VARIABLE(3); if (applyOffset) beta = INPUT_VARIABLE(3 + static_cast(applyScale)); std::vector axes; if (block.numI() > 2) for (int i = 2; i < block.numI(); ++i) axes.push_back(INT_ARG(i)); else axes.push_back(input->rankOf() - 1); std::vector shape({2, mean->lengthOf()}); NDArray weights = NDArrayFactory::create('c', shape, block.launchContext()); weights({0, 1, 0, 0}).assign(1.0f); weights({1, 2, 0, 0}).assign(0.0f); mkldnn_memory_desc_t empty; mkldnn::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md( empty), user_dst_md(empty); auto norm_flag = normalization_flags::use_global_stats; if (applyScale || applyOffset) norm_flag |= normalization_flags::use_scale_shift; mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output, &batchnorm_src_md, nullptr, &batchnorm_dst_md, &user_src_md, nullptr, &user_dst_md, axes[0]); auto batchnorm_desc = batch_normalization_forward::desc(prop_kind::forward_inference, batchnorm_src_md, epsilon, norm_flag); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); mkldnn::stream stream(engine); auto batchnorm_prim_desc = batch_normalization_forward::primitive_desc(batchnorm_desc, engine); auto user_src_memory = mkldnn::memory(user_src_md, engine, input->buffer()); auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer()); auto batchnorm_mean_memory = mkldnn::memory(batchnorm_prim_desc.mean_desc(), engine, mean->buffer()); auto batchnorm_variance_memory = mkldnn::memory(batchnorm_prim_desc.variance_desc(), engine, variance->buffer()); auto batchnorm_src_memory = user_src_memory; mkldnn::memory m(batchnorm_src_md, engine); if (m.get_desc() != user_src_memory.get_desc()) { batchnorm_src_memory = mkldnn::memory(batchnorm_src_md, engine); reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory, batchnorm_src_memory); } auto batchnorm_dst_memory = user_dst_memory; if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) { batchnorm_dst_memory = mkldnn::memory(batchnorm_prim_desc.dst_desc(), engine); } if (applyScale || applyOffset) { if (gamma != nullptr) { weights({0, 1, 0, 0}).assign(gamma); } if (beta != nullptr) { weights({1, 2, 0, 0}).assign(beta); } auto batchnorm_weights_memory = mkldnn::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer()); batch_normalization_forward(batchnorm_prim_desc).execute(stream, {{MKLDNN_ARG_SRC, batchnorm_src_memory}, {MKLDNN_ARG_MEAN, batchnorm_mean_memory}, {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory}, {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory}, {MKLDNN_ARG_DST, batchnorm_dst_memory}}); } else { batch_normalization_forward(batchnorm_prim_desc).execute(stream, {{MKLDNN_ARG_SRC, batchnorm_src_memory}, {MKLDNN_ARG_MEAN, batchnorm_mean_memory}, {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory}, {MKLDNN_ARG_DST, batchnorm_dst_memory}}); } if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) { reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory, user_dst_memory); } stream.wait(); return Status::OK(); } PLATFORM_CHECK(batchnorm_new) { // we don't want to use mkldnn if cpu doesn't support avx/avx2 if (::optimalLevel() < 2) return false; auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray *gamma = nullptr; NDArray *beta = nullptr; auto output = OUTPUT_VARIABLE(0); const bool applyScale = (bool) INT_ARG(0); const bool applyOffset = (bool) INT_ARG(1); const double epsilon = T_ARG(0); if (applyScale) gamma = INPUT_VARIABLE(3); if (applyOffset) beta = INPUT_VARIABLE(3 + static_cast(applyScale)); std::vector axes; if (block.numI() > 2) for (int i = 2; i < block.numI(); ++i) axes.push_back(INT_ARG(i)); else axes.push_back(input->rankOf() - 1); return block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) && axes.size() == 1; } } } }