/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// @author raver119@gmail.com
//

#include <ops/declarable/helpers/sg_cb.h>
#include <specials.h>
#include <execution/Threads.h>

#define HS_MAX_EXP 6.0f

namespace nd4j {
    namespace ops {
        namespace helpers {
            template <typename T>
            void hSoftmax_(void *vsyn0, void *vsyn1, void *vexpTable, void *vneu1e, double alpha, int vectorLength, int code, int expLength, bool isInference) {
                auto syn0 = reinterpret_cast<T*>(vsyn0);
                auto syn1 = reinterpret_cast<T*>(vsyn1);
                auto expTable = reinterpret_cast<T*>(vexpTable);
                auto neu1e = reinterpret_cast<T*>(vneu1e);

                T dot(0.0f);
                T g(0.0f);
                T f(0.0f);

                // dot
                for (int e = 0; e < vectorLength; e++) {
                    dot += syn0[e] * syn1[e];
                }

                // gradient
                if (dot < (T) - HS_MAX_EXP || dot >= (T) HS_MAX_EXP)
                    return;


                int idx = static_cast<int>((dot + HS_MAX_EXP) * ((float) expLength / HS_MAX_EXP / 2.0f));

                if (idx >= expLength || idx < 0)
                    return;

                f = expTable[idx];
                g = (static_cast<T>(1.0f) - static_cast<T>(code) - f) * (T) alpha;

                // axpy1

                for (int e = 0; e < vectorLength; e++) {
                    neu1e[e] = g * syn1[e] + neu1e[e];
                }

                // axpy2
                if (!isInference) {
                    for (int e = 0; e < vectorLength; e++) {
                        syn1[e] = g * syn0[e] + syn1[e];
                    }
                }
            }

            template <typename T>
            void nSampling_(void *vsyn0, void *vsyn1Neg, void *vexpTable, void *vneu1e, double alpha, int vectorLength, int code, int expLength, bool isInference) {
                auto syn0 = reinterpret_cast<T*>(vsyn0);
                auto syn1Neg = reinterpret_cast<T*>(vsyn1Neg);
                auto expTable = reinterpret_cast<T*>(vexpTable);
                auto neu1e = reinterpret_cast<T*>(vneu1e);

                T dot = (T) 0.0f;
                T g = (T) 0.0f;

                for (int e = 0; e < vectorLength; e++) {
                    dot += syn0[e] * syn1Neg[e];
                }

                if (dot > HS_MAX_EXP)
                    g = (code - 1) * alpha;
                else if (dot < (T) - HS_MAX_EXP)
                    g = (code - 0) * alpha;
                else {
                    int idx = (int) ((dot + (T) HS_MAX_EXP) * ((T) expLength / HS_MAX_EXP / 2.0));
                    if (idx >= expLength)
                        return;

                    if (idx < 0)
                        return;

                    g = ((T) code - expTable[idx]) * alpha;
                }

                // axpy1
                for (int e = 0; e < vectorLength; e++) {
                    neu1e[e] = g * syn1Neg[e] + neu1e[e];
                }

                // axpy2
                if (!isInference) {
                    for (int e = 0; e < vectorLength; e++) {
                        syn1Neg[e] = g * syn0[e] + syn1Neg[e];
                    }
                }
            }

            template <typename T>
            void cbow_(void *vsyn0, void *vsyn1, void *vsyn1Neg, void *vexpTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *context, int *lockedWords, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int contextWidth, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const int numLabels, const bool trainWords) {
                auto syn0 = reinterpret_cast<T *>(vsyn0);
                auto syn1 = reinterpret_cast<T *>(vsyn1);
                auto syn1Neg = reinterpret_cast<T *>(vsyn1Neg);
                auto expTable = reinterpret_cast<T *>(vexpTable);
                auto negTable = reinterpret_cast<T *>(vnegTable);
                auto infVector = reinterpret_cast<T *>(vinfVector);

                auto neu1 = new T[vectorLength];
                auto neu1e = new T[vectorLength];
                memset(neu1, 0, vectorLength * sizeof(T));
                memset(neu1e, 0, vectorLength * sizeof(T));

                // building neu1 for current window
                for (int c = 0; c < contextWidth; c++) {
                    if (context[c] >= vocabSize)
                        throw std::runtime_error("Bad context 4");

                    T *syn0word = syn0 + (context[c] * vectorLength);

                    for (int i = 0; i < vectorLength; i++) {
                        neu1[i] += syn0word[i];
                    }
                }

                // for inference we add additional inference vector
                if (infVector != nullptr) {

                    for (int i = 0; i < vectorLength; i++) {
                        neu1[i] += infVector[i];
                    }
                }


                // average neu1
                if (contextWidth > 0) {
                    for (int i = 0; i < vectorLength; i++) {
                        neu1[i] /= contextWidth + (infVector != nullptr ? 1 : 0);
                    }
                }

                // softmax round
                if (hsRounds > 0) {
                    for (int i = 0; i < hsRounds; i++) {
                        if (indices[i] < 0 || indices[i] >= vocabSize)
                            throw std::runtime_error("Bad context 5");

                        hSoftmax_<T>(neu1, syn1 + (indices[i] * vectorLength), expTable, neu1e, alpha, vectorLength, codes[i], expLength, infVector != nullptr);
                    }
                }

                auto nsStarter = ngStarter;
                auto irow = nsStarter;
                if (nsRounds > 0) {
                    for (int r = 0; r < nsRounds + 1; r++) {
                        if (r == 0) {
                            // target is known in advance
                        } else {
                            randomValue = randomValue * (unsigned long long) 25214903917 + 11;
                            auto idx = nd4j::math::nd4j_abs<Nd4jLong >((randomValue >> 16) % negLength);
                            irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);

                            if (irow < 0 || irow >= vocabSize) irow = randomValue % (vocabSize - 1) + 1;
                            if (irow == nsStarter)
                                continue;
                        }

                        nSampling_<T>(neu1, syn1Neg + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
                    }
                }

                // if we don't train words - we skip start of idxSyn0
                int starter = trainWords == 1 ? 0 : contextWidth - numLabels;

                // propagate neu1e -> syn0
                if (infVector == nullptr) {
                    for (int c = starter; c < contextWidth; c++) {
                        if (lockedWords[c] == 1)
                            continue;

                        T *syn0word = syn0 + (context[c] * vectorLength);

                        for (int i = 0; i < vectorLength; i++) {
                            syn0word[i] += neu1e[i];
                        }
                    }
                } else {

                    for (int i = 0; i < vectorLength; i++) {
                        infVector[i] += neu1e[i];
                    }
                }


                delete[] neu1;
                delete[] neu1e;
            }
            BUILD_SINGLE_TEMPLATE(template void cbow_, (void *syn0, void *syn1, void *syn1Neg, void *expTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *context, int *lockedWords, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int contextWidth, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const int numLabels, const bool trainWords), FLOAT_TYPES);


            template <typename T>
            void skipgram_(void *vsyn0, void *vsyn1, void *vsyn1Neg, void *vexpTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength) {
                auto syn0 = reinterpret_cast<T*>(vsyn0);
                auto syn1 = reinterpret_cast<T*>(vsyn1);
                auto syn1Neg = reinterpret_cast<T*>(vsyn1Neg);
                auto expTable = reinterpret_cast<T*>(vexpTable);
                auto negTable = reinterpret_cast<T*>(vnegTable);
                auto infVector = reinterpret_cast<T*>(vinfVector);

                auto neu1e = new T[vectorLength];
                memset(neu1e, 0, vectorLength * sizeof(T));

                // hierarchic softmax goes first (if enabled)
                auto syn0row = infVector != nullptr ? infVector : syn0 + (target * vectorLength);
                auto irow = 0;
                if (hsRounds > 0) {
                    for (int r = 0; r < hsRounds; r++) {
                        irow = indices[r];
                        if (irow < 0 || irow >= vocabSize)
                            break;

                        hSoftmax_<T>(syn0row, syn1 + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, codes[r], expLength, infVector != nullptr);
                    }
                }

                // negative sampling goes second (if enabled)
                auto nsStarter = ngStarter;
                irow = nsStarter;
                if (nsRounds > 0) {
                    for (int r = 0; r < nsRounds + 1; r++) {
                        if (r == 0) {
                            // target is known in advance
                        } else {
                            randomValue = randomValue * (unsigned long long) 25214903917 + 11;
                            auto idx = nd4j::math::nd4j_abs<Nd4jLong >((randomValue >> 16) % negLength);
                            irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);

                            if (irow < 0 || irow >= vocabSize) irow = randomValue % (vocabSize - 1) + 1;
                            if (irow == nsStarter)
                                continue;
                        }

                       nSampling_<T>(syn0row, syn1Neg + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
                    }
                }

                if (infVector == nullptr) {
                    for (int e = 0; e < vectorLength; e++) {
                        syn0row[e] += neu1e[e];
                    }
                } else {
                    for (int e = 0; e < vectorLength; e++) {
                        infVector[e] += neu1e[e];
                    }
                }

                delete[] neu1e;
            }
            BUILD_SINGLE_TEMPLATE(template void skipgram_, (void *syn0, void *syn1, void *syn1Neg, void *expTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength), FLOAT_TYPES);

            int binarySearch(const int *haystack, const int needle, const int totalElements) {
                int firstIndex = 0;
                int lastIndex = totalElements - 1;
                int halfIndex = nd4j::math::nd4j_floor<float, int>((lastIndex + firstIndex) / (float) 2);

                while(haystack[halfIndex] != needle && firstIndex < lastIndex) {
                    if (needle < haystack[halfIndex]) {
                        lastIndex = halfIndex - 1;
                    } else if (needle > haystack[halfIndex]) {
                        firstIndex = halfIndex + 1;
                    }
                    halfIndex = nd4j::math::nd4j_floor<float, int>((lastIndex + firstIndex) / (float) 2);
                }

                return (haystack[halfIndex] == needle) ? halfIndex : -1;
            }

            template <typename T>
            static void do_update(const int target, const int rowIndex, const int count, T *syn0, T *neu1t, const int vectorLength) {

                auto syn0row = syn0 + (target * vectorLength);
                auto neu1e = neu1t + (rowIndex * vectorLength);
                for (int e = 0; e< vectorLength; e++)
                    syn0row[e] += neu1e[e] / count;
            }

            template <typename T>
            static void do_positive(const int target, const int postive, T* syn0, T* syn1Neg, T* expTable, T* neu1e, const double alpha, const int vectorLength, const int expLength) {
                //nd4j_printf("Target: [%i]; Positive: [%i]; TID: [%i];\n", target, postive, omp_get_thread_num());
                nSampling_<T>(syn0, syn1Neg, expTable, neu1e, alpha, vectorLength, 1, expLength, false);
            }

            template <typename T>
            static void do_negative(int target, int positive, T* syn0, T* syn1Neg, T* expTable, T* negTable, T* neu1e, int *sStarters, const double alpha, const unsigned long long rv, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const int nsRounds, const int numThreads, const int numTargets) {
                int irow = 0;
                unsigned long long randomValue = rv;
                for (int r = 0; r < nsRounds; r++) {
                    randomValue = nd4j::math::nd4j_abs<Nd4jLong>(randomValue * (unsigned long long) 25214903917 + 11);
                    auto idx = nd4j::math::nd4j_abs<Nd4jLong>((randomValue >> 16) % negLength);
                    irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);

                    if (irow < 0 || irow >= vocabSize)
                        irow = randomValue % (vocabSize - 1) + 1;

                    if (irow == positive)
                        continue;

                    // we shift irow here to guarantee independence

                    int dim = irow % numThreads;
                    if (dim != omp_get_thread_num()) {
                        irow += (numThreads - dim + omp_get_thread_num());

                        // roll back to nearest affilated word
                        while (irow >= vocabSize)
                            irow -= numThreads;

                        // if this row was processed as first step somewhere - skip it
                        if (binarySearch(sStarters, irow, numTargets) > 0) {
                            r--;
                            continue;
                        }
                    }


                    nSampling_<T>(syn0, syn1Neg + (irow * vectorLength), expTable, neu1e, alpha, vectorLength,  0, expLength, false);
                }
            }

            template <typename T>
            void skipgramBatchExec_(NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool preciseMode, const int numThreads) {
                //auto syn0 = reinterpret_cast<T*>(vsyn0);
                //auto syn1 = reinterpret_cast<T*>(vsyn1);
                //auto syn1Neg = reinterpret_cast<T*>(vsyn1Neg);
                const auto expTable = reinterpret_cast<T*>(vexpTable);
                const auto negTable = reinterpret_cast<T*>(vnegTable);
                const auto infVector = reinterpret_cast<T*>(vinfVector);

                //const auto numThreads = omp_get_max_threads();
                const auto idxShift = indices.isEmpty() ? 0 : indices.sizeAt(1);
                const auto hsRounds = codes.isEmpty() ? 0 : codes.sizeAt(1);

                    // regular mode provides 0 guarantees for reproducibility
                    auto numTargets = targets.lengthOf();
                    auto bTarget = targets.bufferAsT<int>();
                    auto bIndices = indices.bufferAsT<int>();
                    auto bCodes = codes.bufferAsT<int8_t>();

                    auto func = PRAGMA_THREADS_FOR {
                        T sneu1e[600];

                        for (auto t = start; t < stop; t += increment) {
                            T *neu1e = vectorLength <= 600 ? sneu1e : new T[vectorLength];
                            memset(neu1e, 0, vectorLength * sizeof(T));

                            auto target = bTarget[t];
                            auto alpha = lr.e<double>(t);
                            unsigned long long randomValue = nextRandom.e<Nd4jLong>(t);

                            auto syn0row = reinterpret_cast<T *>(s0.bufferWithOffset(target * vectorLength));

                            if (hsRounds > 0) {
                                int irow = 0;
                                auto cShift = t * idxShift;

                                for (int e = 0; e < hsRounds; e++) {
                                    irow = bIndices[e + cShift];
                                    if (irow < 0 || irow >= vocabSize)
                                        continue;

                                    auto syn1row = s1.bufferWithOffset(irow * vectorLength);
                                    auto code = bCodes[e + cShift];

                                    //nd4j_printf("syn0: [%i]; syn1: [%i]; code: [%i]\n", target, irow, code);
                                    hSoftmax_<T>(syn0row, syn1row, expTable, neu1e, alpha, vectorLength, code,
                                                 expLength, false);
                                }
                            }


                            if (nsRounds > 0) {
                                int irow = negStarters.e<int>(t);
                                int nsStarter = irow;
                                for (int r = 0; r < nsRounds + 1; r++) {
                                    if (r == 0) {
                                        // target is known in advance
                                    } else {
                                        randomValue = randomValue * (unsigned long long) 25214903917 + 11;
                                        auto idx = nd4j::math::nd4j_abs<Nd4jLong>((randomValue >> 16) % negLength);
                                        irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);

                                        if (irow < 0 || irow >= vocabSize)
                                            irow = randomValue % (vocabSize - 1) + 1;

                                        if (irow == nsStarter)
                                            continue;
                                    }

                                    nSampling_<T>(syn0row, s1n.bufferWithOffset(irow * vectorLength), expTable, neu1e,
                                                  alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
                                }
                            }

                            for (int e = 0; e < vectorLength; e++)
                                syn0row[e] += neu1e[e];

                            // optionally release temp arrays
                            if (vectorLength > 600)
                                delete[] neu1e;
                        }
                    };

                    samediff::Threads::parallel_tad(func, 0, numTargets, 1, numThreads);
            }
            BUILD_SINGLE_TEMPLATE(template void skipgramBatchExec_, (NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool preciseMode, const int numThreads), FLOAT_TYPES);


            template <typename T>
            void cbowBatchExec_(NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &context, NDArray &lockedWords, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, NDArray &nLabels, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool trainWords, const int numThreads) {
                const auto syn0 = s0.bufferAsT<T>();
                const auto syn1 = s1.bufferAsT<T>();
                const auto syn1Neg = s1n.bufferAsT<T>();

                const auto expTable = reinterpret_cast<T*>(vexpTable);
                const auto negTable = reinterpret_cast<T*>(vnegTable);
                const auto infVector = reinterpret_cast<T*>(vinfVector);

                //const auto numThreads = omp_get_max_threads();
                const auto idxShift = indices.isEmpty() ? 0 : indices.sizeAt(1);
                const auto hsRounds = codes.isEmpty() ? 0 : codes.sizeAt(1);
                const auto numTargets = context.sizeAt(0);
                const int contextWidth = context.sizeAt(1);

                const auto bContext = context.bufferAsT<int>();
                const auto bLocker = lockedWords.bufferAsT<int>();
                const auto bIndices = indices.bufferAsT<int>();
                const auto bCodes = codes.bufferAsT<int8_t>();
                const auto bStarters = negStarters.bufferAsT<int>();
                const auto numIndices = indices.isEmpty() ? 0 : indices.sizeAt(1);

                auto func = PRAGMA_THREADS_FOR {
                    T sneu1[600];
                    T sneu1e[600];

                    for (int e = start; e < stop; e += increment) {
                        T *neu1 = vectorLength <= 600 ? sneu1 : new T[vectorLength];
                        T *neu1e = vectorLength <= 600 ? sneu1e : new T[vectorLength];

                        // optionally we nullify temp arrays after successful (and on first) cycle
                        memset(neu1, 0, sizeof(T) * vectorLength);
                        memset(neu1e, 0, sizeof(T) * vectorLength);

                        auto alpha = lr.e<double>(e);
                        auto numLabels = nLabels.isEmpty() ? 0 : nLabels.e<int>(e);

                        int actualContext = 0;

                        // building neu1 for current window
                        for (int c = 0; c < contextWidth; c++) {
                            // getting next context word
                            auto cContext = bContext[c + (e * contextWidth)];

                            // skipping padded values
                            if (cContext < 0)
                                continue;

                            if (cContext >= vocabSize)
                                throw std::runtime_error("ContextID can't be >= vocab size");

                            T *syn0word = syn0 + (cContext * vectorLength);

                            for (int i = 0; i < vectorLength; i++)
                                neu1[i] += syn0word[i];

                            actualContext++;
                        }

                        if (infVector != nullptr)
                            actualContext++;

                        if (actualContext > 1) {
                            for (int i = 0; i < vectorLength; i++)
                                neu1[i] /= actualContext;
                        }

                        // hierarchic softmax step
                        if (!indices.isEmpty()) {
                            for (int i = 0; i < numIndices; i++) {
                                const int cIndex = bIndices[(e * numIndices) + i];
                                const int cCode = bCodes[(e * numIndices) + i];

                                // we're skipping padded values
                                if (cIndex < 0)
                                    continue;

                                if (cIndex >= vocabSize)
                                    throw std::runtime_error("Index can't be > vocab size");

                                hSoftmax_<T>(neu1, syn1 + (cIndex * vectorLength), expTable, neu1e, alpha, vectorLength,
                                             cCode, expLength, false);
                            }
                        }

                        // negative sampling step
                        if (!negStarters.isEmpty() && nsRounds > 0) {
                            int irow = bStarters[e];
                            const int nsStarter = irow;
                            unsigned long long randomValue = nextRandom.e<Nd4jLong>(e);

                            for (int r = 0; r < nsRounds + 1; r++) {
                                // we're skipping rng on 0 step
                                if (r != 0) {
                                    randomValue = randomValue * (unsigned long long) 25214903917 + 11;
                                    auto idx = nd4j::math::nd4j_abs<Nd4jLong>((randomValue >> 16) % negLength);
                                    irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);

                                    if (irow < 0 || irow >= vocabSize) irow = randomValue % (vocabSize - 1) + 1;
                                    if (irow == nsStarter)
                                        continue;

                                    nSampling_<T>(neu1, s1n.bufferWithOffset(irow * vectorLength), expTable, neu1e,
                                                  alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
                                } else {
                                    nSampling_<T>(neu1, s1n.bufferWithOffset(irow * vectorLength), expTable, neu1e,
                                                  alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
                                }

                                //nd4j_printf("Thread <%i>: syn0: [%i]; s1n: [%i];\n", omp_get_thread_num(), 0, irow);
                            }
                        }


                        // if we're skipping labels
                        int starter = trainWords == 1 ? 0 : contextWidth - numLabels;

                        // applying previously averaged results
                        for (int c = starter; c < contextWidth; c++) {
                            // getting context
                            auto cContext = bContext[c + (e * contextWidth)];
                            auto cLock = bLocker[c + (e * contextWidth)];

                            // skipping padded values
                            if (cContext < 0 || cLock == 1)
                                continue;

                            if (cContext >= vocabSize)
                                throw std::runtime_error("ContextID can't be > vocab size");

                            // one word from context
                            T *syn0word = syn0 + (cContext * vectorLength);

                            for (int i = 0; i < vectorLength; i++)
                                syn0word[i] += neu1e[i];

                        }

                        // optionally release temp arrays
                        if (vectorLength > 600) {
                            delete[] neu1;
                            delete[] neu1e;
                        }
                    }
                };

                samediff::Threads::parallel_tad(func, 0, numTargets, 1, numThreads);
            }
            BUILD_SINGLE_TEMPLATE(template void cbowBatchExec_, (NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &context, NDArray &lockedWords, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, NDArray &nLabels, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength,  const bool trainWords, const int numThreads), FLOAT_TYPES);

            void skipgram(NDArray &syn0, NDArray &syn1, NDArray &syn1Neg, NDArray &expTable, NDArray &negTable, NDArray &target, NDArray &ngStarter, int nsRounds, NDArray &indices, NDArray &codes, NDArray &alpha, NDArray &randomValue, NDArray &inferenceVector, const bool preciseMode, const int numWorkers) {
                auto xType = syn0.dataType();

                // single round case
                if ((ngStarter.isScalar() && !ngStarter.isEmpty())|| (target.isScalar() && !target.isEmpty())) {
                    auto hsRounds = codes.lengthOf();

                    BUILD_SINGLE_SELECTOR(xType, skipgram_, (syn0.buffer(), syn1.buffer(), syn1Neg.buffer(), expTable.buffer(), negTable.buffer(), inferenceVector.buffer(), target.isEmpty() ? -1 : target.e<int>(0), ngStarter.isEmpty() ? -1 : ngStarter.e<int>(0), reinterpret_cast<int *>(indices.buffer()), reinterpret_cast<int8_t *>(codes.buffer()), alpha.e<double>(0), randomValue.e<Nd4jLong>(0), hsRounds, nsRounds, (int) syn0.sizeAt(0), (int) syn0.sizeAt(1), (int) expTable.lengthOf(), (int) negTable.lengthOf()), FLOAT_TYPES);
                } else if (ngStarter.isVector() || target.isVector()){
                    // batch mode

                    BUILD_SINGLE_SELECTOR(xType, skipgramBatchExec_, (syn0, syn1, syn1Neg, expTable.buffer(), negTable.buffer(), nullptr, target, ngStarter, indices, codes, alpha, randomValue, nsRounds, syn0.sizeAt(0), syn0.sizeAt(1), expTable.lengthOf(), negTable.lengthOf(), preciseMode, numWorkers), FLOAT_TYPES);
                } else
                    throw std::runtime_error("SkipGram: target must have rank 0 or 1");
            }

            void cbow(NDArray &syn0, NDArray &syn1, NDArray &syn1Neg, NDArray &expTable, NDArray &negTable, NDArray &target, NDArray &ngStarter, int nsRounds, NDArray &context, NDArray &lockedWords, NDArray &indices, NDArray &codes, NDArray &alpha, NDArray &randomValue, NDArray &numLabels, NDArray &inferenceVector, const bool trainWords, int numWorkers) {
                auto xType = syn0.dataType();

                if ((context.rankOf() == 0 || context.rankOf() == 1) && (indices.rankOf() == 1 || indices.rankOf() == 0)) {
                    // single round case
                    /*nd4j_printf("Row exec; ContextWidth: %i; LockedWords: %i; numLabels: %i; Train words: %i\n", (int) context.lengthOf(), (int) lockedWords.lengthOf(), numLabels.isEmpty() ? 0 : numLabels.e<int>(0), (int) trainWords);
                    if (context.lengthOf() == 2) {
                        context.printBuffer("context");
                        lockedWords.printBuffer("locked");
                        codes.printBuffer("codes");
                        indices.printBuffer("indices");
                    }*/

                    auto hsRounds = codes.lengthOf();

                    BUILD_SINGLE_SELECTOR(xType, cbow_, (syn0.buffer(), syn1.buffer(), syn1Neg.buffer(), expTable.buffer(), negTable.buffer(), inferenceVector.buffer(), target.isEmpty() ? -1 : target.e<int>(0), ngStarter.isEmpty() ? -1 : ngStarter.e<int>(0), reinterpret_cast<int *>(context.buffer()), reinterpret_cast<int *>(lockedWords.buffer()),reinterpret_cast<int *>(indices.buffer()), reinterpret_cast<int8_t *>(codes.buffer()), alpha.e<double>( 0), randomValue.e<Nd4jLong>(0), (int) context.lengthOf(), hsRounds, nsRounds, (int) syn0.sizeAt(0), (int) syn0.sizeAt(1), (int) expTable.lengthOf(), (int) negTable.lengthOf(), numLabels.isEmpty() ? 0 : numLabels.e<int>(0), trainWords), FLOAT_TYPES);
                } else if (context.rankOf() == 2 && indices.rankOf() == 2) {
                    // batch mode
                    //nd4j_printf("Batch exec\n","");

                    BUILD_SINGLE_SELECTOR(xType, cbowBatchExec_, (syn0, syn1, syn1Neg, expTable.buffer(), negTable.buffer(), nullptr, context, lockedWords, target, ngStarter, indices, codes, alpha, randomValue, numLabels, nsRounds, syn0.sizeAt(0), syn0.sizeAt(1), expTable.lengthOf(), negTable.isEmpty() ? 0 : negTable.lengthOf(), trainWords, numWorkers), FLOAT_TYPES);
                } else
                    throw std::runtime_error("CBOW: context must have rank 0/1 or 2");
            }
        }
    }
}