/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // implementation of operations for Simple Recurrent Unit: arXiv:1709.02755v2 [cs.CL] 12 Sep 2017 // // @author Yurii Shyrma, created on 05.12.2017 // #include #include #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// static FORCEINLINE NDArray activation(const NDArray& arr) { // return (const_cast&>(arr)).template transform>(); auto result = NDArray(&arr, false, arr.getContext()); (const_cast(arr)).applyTransform(transform::Tanh, result); return result; } ////////////////////////////////////////////////////////////////////////// static FORCEINLINE NDArray sigmoid(const NDArray& arr) { return (const_cast(arr)).transform(transform::Sigmoid); } ////////////////////////////////////////////////////////////////////////// void sruCell(sd::LaunchContext * context, const NDArray* x, const NDArray* c0, const NDArray* w, const NDArray* b, NDArray* h, NDArray* c) { // x input [bS x inSize], bS - batch size, inSize - number of features // c0 previous cell state c [bS x inSize], that is at previous time step t-1 // w weights [inSize x 3*inSize] // b biases [2*inSize] // h current cell output [bS x inSize], that is at current time step t // c current cell state [bS x inSize], that is at current time step t const int inSize = x->sizeAt(1); // inSize - number of features auto z = mmul(*x, *w); // [bS x 3*inSize] // forget gate = sigmoid(x*Wf + bf) auto f = sigmoid(z({0,0, inSize, 2*inSize}) + (*b)({0, inSize})); // reset gate = sigmoid(x*Wr + br) auto r = sigmoid(z({0,0, 2*inSize, 3*inSize}) + (*b)({inSize, 2*inSize})); // ◦ means element-wise product or so called Hadamard product // current sell state = f◦c0 + (1 - f)◦(x*Wc) c->assign(f * (*c0) + (1.f - f) * z({0, 0 ,0, inSize}) ); // *c = f*(*c0 - z({},{0, inSize})) + z({{},{0, inSize}}); // current cell output = r◦activation(c) + (1 - r)◦x h->assign( r * activation(*c) + (1.f - r) * (*x) ); // *h = r * (activation(c) - *x) + *x; } ////////////////////////////////////////////////////////////////////////// void sruTimeLoop(sd::LaunchContext * context, const NDArray* x, const NDArray* c0, const NDArray* w, const NDArray* b, NDArray* h, NDArray* c) { // x input [bS x inSize x time] // c0 initial cell state (at time step = 0) [bS x inSize], // w weights, [3*inSize x inSize] // b biases, [2*inSize] // h cell outputs [bS x inSize x time] // c cell states [bS x inSize x time] auto wT = w->transpose(); // [3*inSize x inSize] -> [inSize x 3*inSize] const int time = x->sizeAt(2); NDArray ct_1(*c0); // loop through time steps for (int t = 0; t < time; ++t) { auto xt = (*x)({0,0, 0,0, t,t+1}); auto ht = (*h)({0,0, 0,0, t,t+1}); auto ct = (*c)({0,0, 0,0, t,t+1}); helpers::sruCell(context, &xt, &ct_1, &wT, b, &ht, &ct); ct_1.assign(ct); } } ////////////////////////////////////////////////////////////////////////// template __global__ static void sruBICuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vwi, const Nd4jLong* wiShapeInfo, const void* vb, const Nd4jLong* bShapeInfo, const void* vc0, const Nd4jLong* c0ShapeInfo, const void* vmask, const Nd4jLong* maskShapeInfo, void* vht, const Nd4jLong* htShapeInfo, void* vct, const Nd4jLong* ctShapeInfo) { // inputs: // x [time, bS, 2*K] // wi [time, bS, 6*K], wi = mmul(x, weights); // b [4*K] // c0 [bS, 2*K] // mask [bS, 2*K], optional // outputs // ht [time, bS, 2*K] // ct [time, bS, 2*K] const auto x = reinterpret_cast(vx); const auto wi = reinterpret_cast(vwi); const auto b = reinterpret_cast(vb); const auto c0 = reinterpret_cast(vc0); const auto mask = reinterpret_cast(vmask); auto ht = reinterpret_cast(vht); auto ct = reinterpret_cast(vct); const int rank = 3; __shared__ int time, K, *sharedMem; __shared__ Nd4jLong len, totalThreads; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); time = xShapeInfo[1]; K = xShapeInfo[3] / 2; len = xShapeInfo[2] * xShapeInfo[3]; // 2*K*bS totalThreads = gridDim.x * blockDim.x; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; auto coords = sharedMem + threadIdx.x * rank; if(tid >= len) return; shape::index2coords(tid, rank - 1, xShapeInfo + 2, coords + 1); // loop through last two dimensions of x : {bS, 2*K} const auto maskOffst = mask ? shape::getOffset(maskShapeInfo, coords + 1) : 0; const auto c0Offset = shape::getOffset(c0ShapeInfo, coords + 1); const auto bFOffset = shape::getOffset(bShapeInfo, coords + 2); const auto bROffset = bFOffset + 2 * K * bShapeInfo[2]; // 2*K*b_stride const T maskVal = mask ? mask[maskOffst] : static_cast(1); const T bF = b[bFOffset]; const T bR = b[bROffset]; T c0Val = c0[c0Offset]; const bool flip = coords[2] >= K; if(flip) coords[0] = time - 1; else coords[0] = 0; auto xOffset = shape::getOffset(xShapeInfo, coords); auto htOffset = shape::getOffset(htShapeInfo, coords); auto ctOffset = shape::getOffset(ctShapeInfo, coords); coords[2] *= 3; auto wiOffset0 = shape::getOffset(wiShapeInfo, coords); auto wiOffset1 = wiOffset0 + wiShapeInfo[rank + 3]; // add last stride auto wiOffset2 = wiOffset1 + wiShapeInfo[rank + 3]; // add last stride // time loop for (uint t = 0; t < time; ++t) { // evaluate sigmoids T ft = (1.f)/(1.f + sd::math::nd4j_exp(-(wi[wiOffset1] + bF))); T rt = (1.f)/(1.f + sd::math::nd4j_exp(-(wi[wiOffset2] + bR))); c0Val = (c0Val - wi[wiOffset0]) * ft + wi[wiOffset0]; ct[ctOffset] = c0Val; T val = sd::math::nd4j_tanh(c0Val); T xVal = x[xOffset]; ht[htOffset] = (val * maskVal - xVal) * rt + xVal; if(flip) { xOffset -= xShapeInfo[rank + 1]; // first stride, corresponds to time step htOffset -= htShapeInfo[rank + 1]; ctOffset -= htShapeInfo[rank + 1]; wiOffset0 -= wiShapeInfo[rank + 1]; wiOffset1 -= wiShapeInfo[rank + 1]; wiOffset2 -= wiShapeInfo[rank + 1]; } else { xOffset += xShapeInfo[rank + 1]; // first stride, corresponds to time step htOffset += htShapeInfo[rank + 1]; ctOffset += htShapeInfo[rank + 1]; wiOffset0 += wiShapeInfo[rank + 1]; wiOffset1 += wiShapeInfo[rank + 1]; wiOffset2 += wiShapeInfo[rank + 1]; } } } ////////////////////////////////////////////////////////////////////////// template static void sruBICudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vwi, const Nd4jLong* wiShapeInfo, const void* vb, const Nd4jLong* bShapeInfo, const void* vc0, const Nd4jLong* c0ShapeInfo, const void* vmask, const Nd4jLong* maskShapeInfo, void* vht, const Nd4jLong* htShapeInfo, void* vct, const Nd4jLong* ctShapeInfo) { sruBICuda<<>>(vx, xShapeInfo, vwi, wiShapeInfo, vb, bShapeInfo, vc0, c0ShapeInfo, vmask, maskShapeInfo, vht, htShapeInfo, vct, ctShapeInfo); } ////////////////////////////////////////////////////////////////////////// void sruBI(sd::LaunchContext * context, NDArray* x, const NDArray* w, const NDArray* b, const NDArray* c0, const NDArray* mask, NDArray* ht, NDArray* ct) { // x = x * mask if(mask) x->applyBroadcast(broadcast::Multiply, {1, 2}, *mask, *x); // apply mask // U = x * w NDArray wi = mmul(*x, *w); // U [time x bS x 6*K] PointersManager manager(context, "sru_bi"); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = (x->sizeAt(1) * x->sizeAt(2) + threadsPerBlock - 1) / threadsPerBlock; // loop through last two dimensions of x array -> bS, 2*K const int sharedMem = threadsPerBlock * sizeof(int) * x->rankOf() + 128; NDArray::prepareSpecialUse({ht, ct}, {x, &wi, b, c0, mask}); BUILD_SINGLE_SELECTOR(x->dataType(), sruBICudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), x->specialBuffer(), x->specialShapeInfo(), wi.specialBuffer(), wi.specialShapeInfo(), b->specialBuffer(), b->specialShapeInfo(), c0->specialBuffer(), c0->specialShapeInfo(), mask ? mask->specialBuffer() : nullptr, mask ? mask->specialShapeInfo() : nullptr, ht->specialBuffer(), ht->specialShapeInfo(), ct->specialBuffer(), ct->specialShapeInfo()), FLOAT_TYPES); NDArray::registerSpecialUse({ht, ct}, {x, &wi, b, c0, mask}); manager.synchronize(); } ////////////////////////////////////////////////////////////////////////// template __global__ static void sruBIBPCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vwi, const Nd4jLong* wiShapeInfo, const void* vb, const Nd4jLong* bShapeInfo, const void* vc0, const Nd4jLong* c0ShapeInfo, const void* vmask, const Nd4jLong* maskShapeInfo, const void* vct, const Nd4jLong* ctShapeInfo, const void* vgradHt, const Nd4jLong* gradHtShapeInfo, const void* vgradCt, const Nd4jLong* gradCtShapeInfo, void* vgradI, const Nd4jLong* gradIShapeInfo, void* vgradWi, const Nd4jLong* gradWiShapeInfo, void* vgradB, const Nd4jLong* gradBShapeInfo, void* vgradC0, const Nd4jLong* gradC0ShapeInfo) { // inputs: // x [time, bS, 2*K] // wi [time, bS, 6*K], wi = mmul(x, weights); // b [4*K] // c0 [bS, 2*K] // mask [bS, 2*K], optional // ct [time, bS, 2*K] // gradHt [time, bS, 2*K] // gradCt [bS, 2*K] // outputs // gradI [time, bS, 2*K] // gradWi [time, 2*K, 6*K] // gradB [bS, 4*K] // gradC0 [bS, 2*K] const auto x = reinterpret_cast(vx); const auto wi = reinterpret_cast(vwi); const auto b = reinterpret_cast(vb); const auto c0 = reinterpret_cast(vc0); const auto mask = reinterpret_cast(vmask); const auto ct = reinterpret_cast(vct); const auto gradHt = reinterpret_cast(vgradHt); const auto gradCt = reinterpret_cast(vgradCt); auto gradI = reinterpret_cast(vgradI); auto gradWi = reinterpret_cast(vgradWi); auto gradB = reinterpret_cast(vgradB); auto gradC0 = reinterpret_cast(vgradC0); const int rank = 3; __shared__ int time, K, *sharedMem; __shared__ Nd4jLong len, totalThreads; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); time = xShapeInfo[1]; K = xShapeInfo[3] / 2; len = xShapeInfo[2] * xShapeInfo[3]; // 2*K*bS totalThreads = gridDim.x * blockDim.x; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; auto coords = sharedMem + threadIdx.x * rank; if(tid >= len) return; shape::index2coords(tid, rank - 1, xShapeInfo + 2, coords + 1); // loop through last two dimensions of x : {bS, 2*K} const auto maskOffst = mask ? shape::getOffset(maskShapeInfo, coords + 1) : 0; const auto c0Offset = shape::getOffset(c0ShapeInfo, coords + 1); const auto gradCtOffset = shape::getOffset(gradCtShapeInfo, coords + 1); const auto gradC0Offset = shape::getOffset(gradC0ShapeInfo, coords + 1); const auto bFOffset = shape::getOffset(bShapeInfo, coords + 2); const auto bROffset = bFOffset + 2 * K * bShapeInfo[2]; // 2*K*b_stride // const auto gradBFOffset = shape::getOffset(gradBShapeInfo, coords + 1); const auto gradBFOffset = coords[1] * gradBShapeInfo[3] / 2 + coords[2] * gradBShapeInfo[4]; const auto gradBROffset = gradBFOffset + gradBShapeInfo[3]; const bool flip = coords[2] >= K; if(flip) coords[0] = 0; else coords[0] = time - 1; auto xOffset = shape::getOffset(xShapeInfo, coords); auto ctOffset = shape::getOffset(ctShapeInfo, coords); auto gradIOffset = shape::getOffset(gradIShapeInfo, coords); auto gradHtOffset = shape::getOffset(gradHtShapeInfo, coords); coords[2] *= 3; auto gradWiOffset0 = shape::getOffset(gradWiShapeInfo, coords); auto gradWiOffset1 = gradWiOffset0 + gradWiShapeInfo[rank + 3]; // add last stride auto gradWiOffset2 = gradWiOffset1 + gradWiShapeInfo[rank + 3]; // add last stride auto wiOffset0 = shape::getOffset(wiShapeInfo, coords); auto wiOffset1 = wiOffset0 + wiShapeInfo[rank + 3]; // add last stride auto wiOffset2 = wiOffset1 + wiShapeInfo[rank + 3]; // add last stride const T xVal = x[xOffset]; const T maskVal = mask ? mask[maskOffst] : static_cast(1); const T c0Val = c0[c0Offset]; const T bF = b[bFOffset]; const T bR = b[bROffset]; T gradCtVal = gradCt[gradCtOffset]; T gbF = 0.f; T gbR = 0.f; // time loop for (uint t = 0; t < time; ++t) { // evaluate sigmoids T ft = (1.f)/(1.f + sd::math::nd4j_exp(-(wi[wiOffset1] + bF))); T rt = (1.f)/(1.f + sd::math::nd4j_exp(-(wi[wiOffset2] + bR))); T val = sd::math::nd4j_tanh(ct[ctOffset]); T prevVal; if(t < time-1) prevVal = ct[ctOffset += flip ? ctShapeInfo[rank + 1] : -ctShapeInfo[rank + 1]]; else prevVal = c0Val; // grad wrt input gradI[gradIOffset] = gradHt[gradHtOffset] - gradHt[gradHtOffset] * rt ; // grad wrt rt, wiR and bR T grt = gradHt[gradHtOffset] * (val * maskVal - x[xOffset]) * (rt - rt * rt); gradWi[gradWiOffset2] = grt; gbR += grt; // grad wrt state T gradC0Val = gradHt[gradHtOffset] * maskVal * (rt - rt * val * val) + gradCtVal; // grad wrt wi0 gradWi[gradWiOffset0] = gradC0Val - gradC0Val * ft; // grad wrt ft, wi1, and bF T gft = gradC0Val * (prevVal - wi[wiOffset0]) * (ft - ft * ft); gradWi[gradWiOffset1] = gft; gbF += gft; // grad wrt c_previous gradCtVal = gradC0Val * ft; if(flip) { xOffset += xShapeInfo[rank + 1]; // first stride, corresponds to time step gradHtOffset += gradHtShapeInfo[rank + 1]; gradIOffset += gradIShapeInfo[rank + 1]; wiOffset0 += wiShapeInfo[rank + 1]; wiOffset1 += wiShapeInfo[rank + 1]; wiOffset2 += wiShapeInfo[rank + 1]; gradWiOffset0 += gradWiShapeInfo[rank + 1]; gradWiOffset1 += gradWiShapeInfo[rank + 1]; gradWiOffset2 += gradWiShapeInfo[rank + 1]; } else { xOffset -= xShapeInfo[rank + 1]; // first stride, corresponds to time step gradHtOffset -= gradHtShapeInfo[rank + 1]; gradIOffset -= gradIShapeInfo[rank + 1]; wiOffset0 -= wiShapeInfo[rank + 1]; wiOffset1 -= wiShapeInfo[rank + 1]; wiOffset2 -= wiShapeInfo[rank + 1]; gradWiOffset0 -= gradWiShapeInfo[rank + 1]; gradWiOffset1 -= gradWiShapeInfo[rank + 1]; gradWiOffset2 -= gradWiShapeInfo[rank + 1]; } } gradB[gradBFOffset] = gbF; gradB[gradBROffset] = gbR; gradC0[gradC0Offset] = gradCtVal; } ////////////////////////////////////////////////////////////////////////// template static void sruBIBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vwi, const Nd4jLong* wiShapeInfo, const void* vb, const Nd4jLong* bShapeInfo, const void* vc0, const Nd4jLong* c0ShapeInfo, const void* vmask, const Nd4jLong* maskShapeInfo, const void* vct, const Nd4jLong* ctShapeInfo, const void* vgradHt, const Nd4jLong* gradHtShapeInfo, const void* vgradCt, const Nd4jLong* gradCtShapeInfo, void* vgradI, const Nd4jLong* gradIShapeInfo, void* vgradWi, const Nd4jLong* gradWiShapeInfo, void* vgradB, const Nd4jLong* gradBShapeInfo, void* vgradC0, const Nd4jLong* gradC0ShapeInfo) { sruBIBPCuda<<>>(vx, xShapeInfo, vwi, wiShapeInfo, vb, bShapeInfo, vc0, c0ShapeInfo, vmask, maskShapeInfo, vct, ctShapeInfo, vgradHt, gradHtShapeInfo, vgradCt, gradCtShapeInfo, vgradI, gradIShapeInfo, vgradWi, gradWiShapeInfo, vgradB, gradBShapeInfo, vgradC0, gradC0ShapeInfo); } BUILD_SINGLE_TEMPLATE(template void sruBIBPCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vwi, const Nd4jLong* wiShapeInfo, const void* vb, const Nd4jLong* bShapeInfo, const void* vc0, const Nd4jLong* c0ShapeInfo, const void* vmask, const Nd4jLong* maskShapeInfo, const void* vct, const Nd4jLong* ctShapeInfo, const void* vgradHt, const Nd4jLong* gradHtShapeInfo, const void* vgradCt, const Nd4jLong* gradCtShapeInfo, void* vgradI, const Nd4jLong* gradIShapeInfo, void* vgradWi, const Nd4jLong* gradWiShapeInfo, void* vgradB, const Nd4jLong* gradBShapeInfo, void* vgradC0, const Nd4jLong* gradC0ShapeInfo), FLOAT_TYPES); ////////////////////////////////////////////////////////////////////////// void sruBIBP(sd::LaunchContext* context, NDArray* x, const NDArray* w, const NDArray* b, const NDArray* c0, const NDArray* ct, const NDArray* gradCt, const NDArray* gradHt, const NDArray* mask, NDArray* gradI, NDArray* gradW, NDArray* gradB, NDArray* gradC0) { // x = x * mask if(mask) x->applyBroadcast(broadcast::Multiply, {1, 2}, *mask, *x); // apply mask // U = x * w NDArray wi = mmul(*x, *w); // U [time x bS x 6*K] const int time = x->sizeAt(0); const int bS = x->sizeAt(1); const int K = x->sizeAt(2) / 2; NDArray gradBias(x->ordering(), {bS, 4*K}, x->dataType(), context); NDArray gradWi (x->ordering(), {time, bS, 6*K}, x->dataType(), context); PointersManager manager(context, "sru_bi_bp"); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = (x->sizeAt(1) * x->sizeAt(2) + threadsPerBlock - 1) / threadsPerBlock; // loop through last two dimensions of x array -> bS, 2*K const int sharedMem = threadsPerBlock * sizeof(int) * x->rankOf() + 128; NDArray::prepareSpecialUse({gradI, &gradWi, &gradBias, gradC0}, {x, &wi, b, c0, ct, gradCt, gradHt, mask}); BUILD_SINGLE_SELECTOR(x->dataType(), sruBIBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), x->specialBuffer(), x->specialShapeInfo(), wi.specialBuffer(), wi.specialShapeInfo(), b->specialBuffer(), b->specialShapeInfo(), c0->specialBuffer(), c0->specialShapeInfo(), mask ? mask->specialBuffer() : nullptr, mask ? mask->specialShapeInfo() : nullptr, ct->specialBuffer(), ct->specialShapeInfo(), gradHt->specialBuffer(), gradHt->specialShapeInfo(), gradCt->specialBuffer(), gradCt->specialShapeInfo(), gradI->specialBuffer(), gradI->specialShapeInfo(), gradWi.specialBuffer(), gradWi.specialShapeInfo(), gradBias.specialBuffer(), gradBias.specialShapeInfo(), gradC0->specialBuffer(), gradC0->specialShapeInfo()), FLOAT_TYPES); NDArray::registerSpecialUse({gradI, &gradWi, &gradBias, gradC0}, {x, &wi, b, c0, ct, gradCt, gradHt, mask}); manager.synchronize(); // gradB gradBias.reduceAlongDimension(reduce::Sum, *gradB, {0}); // [4*K] // gradW x->permutei({0, 2, 1}); // [time, bS, 2*K] -> [time, 2*K, bS] MmulHelper::mmul(x, &gradWi, gradW, 1., 0.); // [time, 2*K, bS] x [time, bS , 6*K] = [time, 2*K, 6*K] } } } }