/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018 // #include #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// void scatterUpdate(sd::LaunchContext * context, NDArray& input, NDArray& updates, const std::vector* intArgs) { int opCode = (*intArgs)[0]; int dimSize = (*intArgs)[1]; Nd4jLong e; Nd4jLong limg = 2 + dimSize; std::vector tadDimensions(dimSize); for (e = 2; e < limg; e++) tadDimensions[e-2] = (*intArgs)[e]; std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(input.rankOf(), tadDimensions); // increasing counter to skip numIndices e++; std::vector indices; for (; e < static_cast(intArgs->size()); e++) indices.push_back((*intArgs)[e]); auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { auto inSubArr = input(indices[i], dimsToExclude, true); auto updSubArr = updates(i, dimsToExclude, true); if (inSubArr.lengthOf() != updSubArr.lengthOf()) continue; switch (opCode) { case 0: inSubArr.applyPairwiseTransform(pairwise::Add, updSubArr, inSubArr); break; case 1: inSubArr.applyPairwiseTransform(pairwise::Subtract, updSubArr, inSubArr); break; case 2: inSubArr.applyPairwiseTransform(pairwise::Multiply, updSubArr, inSubArr); break; case 3: inSubArr.applyPairwiseTransform(pairwise::Divide, updSubArr, inSubArr); break; case 4: inSubArr.applyPairwiseTransform(pairwise::ReverseSubtract, updSubArr, inSubArr); break; case 5: inSubArr.applyPairwiseTransform(pairwise::ReverseDivide, updSubArr, inSubArr); break; case 6: inSubArr.applyPairwiseTransform(pairwise::CopyPws, updSubArr, inSubArr); break; default: continue; } } }; samediff::Threads::parallel_tad(func, 0, indices.size()); } ////////////////////////////////////////////////////////////////////////// void scatterSimple(sd::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector& dimensions) { // updates and indices have same length const Nd4jLong len = indices.lengthOf(); switch (opId) { case 6: { // copy auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { auto inSubArr = input(i, dimensions); inSubArr.p(indices.t(i), updates.e(i)); } }; samediff::Threads::parallel_for(func, 0, len); } break; default: throw std::invalid_argument("helpers::scatterSimple: operation is not implemented for given id !"); } } } } }