/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS (sgazeos@gmail.com), created on 10/1/2018 // #include<ops/declarable/helpers/cross.h> #include <helpers/ShapeUtils.h> #include <ops/declarable/CustomOperations.h> namespace nd4j { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// template <typename T> static void weightedCrossEntropyWithLogitsFunctor_(NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) { T posWeight = weights->e<T>(0); auto mainRoutineT1 = LAMBDA_TT(_x, _z, posWeight) { T targetWeight = (1. + (posWeight - (T)1.f) * _z); return (1. - _z) * _x + targetWeight * (nd4j::math::nd4j_log<T,T>((T)1.f + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) + nd4j::math::nd4j_max(-_x, T(0.f)) ); }; auto mainRoutineT2 = LAMBDA_TTT(_x, _z, _w) { return (((T)1.0 - _z) * _x) + _w * (nd4j::math::nd4j_log<T,T>(T(1.) + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) + nd4j::math::nd4j_max(-_x, T(0.f))); }; if (weights->isScalar()) { const_cast<NDArray*>(input)->applyPairwiseLambda<T>(const_cast<NDArray*>(targets), mainRoutineT1, output); } else { std::unique_ptr<NDArray> targetVector(new NDArray(*weights)); targetVector->applyScalar(scalar::Add, -1.f); std::unique_ptr<NDArray> targetTensor(new NDArray(*targets)); *targetTensor = (*targetVector * *targetTensor) + T(1.f); const_cast<NDArray*>(input)->applyTriplewiseLambda<T>(const_cast<NDArray*>(targets), targetTensor.get(), mainRoutineT2, output); } } void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) { BUILD_SINGLE_SELECTOR(targets->dataType(), weightedCrossEntropyWithLogitsFunctor_, (targets, input, weights, output), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void weightedCrossEntropyWithLogitsFunctor_, (NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output), FLOAT_TYPES); } } }