/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// template static __global__ void avgPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); //Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH-1)*(dH-1); kWEff = kW + (kW-1)*(dW-1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if(hstart < 0){ int f = sd::math::nd4j_ceil((Z) -hstart / (Z)dH); hstart += f * dH; } if(wstart < 0){ int f = sd::math::nd4j_ceil((Z) -wstart / (Z) dW); wstart += f * dW; } if(hend > iH){ int f = sd::math::nd4j_ceil((Z) (hend-iH) / (Z) dH); hend -= f * dH; } if(wend > iW){ int f = sd::math::nd4j_ceil((Z) (wend-iW) / (Z) dW); wend -= f * dW; } //Accounts for dilation int pool_size = sd::math::nd4j_ceil((double) (hend-hstart) / (double) dH) * sd::math::nd4j_ceil((double) (wend-wstart) / (double) dW); Z sum = 0.0f; const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) for (int w = wstart; w < wend; w += dW) sum += static_cast(inSlice[h * strideY + w * strideX]); int divide_factor = pool_size; //Case 0: exclude padding if (extraParam0 == 1) //Case 1: include padding divide_factor = kH * kW; z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sum / static_cast(divide_factor); } } ////////////////////////////////////////////////////////////////////////// template static void avgPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { avgPooling2dCuda<<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// template static __global__ void pnormPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; __shared__ bool fOrder; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); //Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH-1)*(dH-1); kWEff = kW + (kW-1)*(dW-1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if (hstart < 0) { int f = sd::math::nd4j_ceil((Z) -hstart / (Z) dH); hstart += f * dH; } if (wstart < 0) { int f = sd::math::nd4j_ceil((Z) -wstart / (Z) dW); wstart += f * dW; } if (hend > iH) { int f = sd::math::nd4j_ceil((Z) (hend - iH) / (Z) dH); hend -= f * dH; } if (wend > iW) { int f = sd::math::nd4j_ceil((Z) (wend - iW) / (Z) dW); wend -= f * dW; } //Accounts for dilation int pool_size = sd::math::nd4j_ceil((double) (hend - hstart) / (double) dH) * sd::math::nd4j_ceil((double) (wend - wstart) / (double) dW); Z sum = 0.f; const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) for (int w = wstart; w < wend; w += dW) sum += sd::math::nd4j_pow(static_cast(sd::math::nd4j_abs(inSlice[h * strideY + w * strideX])), extraParam0); z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = sd::math::nd4j_pow(sum, (Z) 1.0f / extraParam0); } } ////////////////////////////////////////////////////////////////////////// template static void pnormPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { pnormPooling2dCuda<<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// template static __global__ void maxPooling2dCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { // input is [bS, iC, iH, iW] // output is [bS, iC, oH, oW] const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ int bS, iC, oH, oW, iH, iW, strideB, strideC, strideY, strideX, strideOB, strideOC, strideOY, strideOX, length, kHEff, kWEff; __shared__ bool fOrder; if (threadIdx.x == 0) { bS = shape::sizeAt(xShapeInfo, 0); iC = shape::sizeAt(xShapeInfo, 1); oH = shape::sizeAt(zShapeInfo, 2); oW = shape::sizeAt(zShapeInfo, 3); iH = shape::sizeAt(xShapeInfo, 2); iW = shape::sizeAt(xShapeInfo, 3); strideB = shape::stride(xShapeInfo)[0]; strideC = shape::stride(xShapeInfo)[1]; strideY = shape::stride(xShapeInfo)[2]; strideX = shape::stride(xShapeInfo)[3]; strideOB = shape::stride(zShapeInfo)[0]; strideOC = shape::stride(zShapeInfo)[1]; strideOY = shape::stride(zShapeInfo)[2]; strideOX = shape::stride(zShapeInfo)[3]; length = shape::length(zShapeInfo); //Replace kernel H/W with *effective* kernel H/W accounting for dilatyon kHEff = kH + (kH-1)*(dH-1); kWEff = kW + (kW-1)*(dW-1); } __syncthreads(); int tid = blockIdx.x * blockDim.x + threadIdx.x; for (int index = tid; index < length; index += blockDim.x * gridDim.x) { const int pw = index % oW; const int ph = (index / oW) % oH; const int c = (index / oW / oH) % iC; const int n = index / oW / oH / iC; int hstart = sH * ph - pH; int wstart = sW * pw - pW; int hend = hstart + kHEff; int wend = wstart + kWEff; if(hstart < 0){ int f = sd::math::nd4j_ceil((Z) -hstart / (Z)dH); hstart += f * dH; } if(wstart < 0){ int f = sd::math::nd4j_ceil((Z) -wstart / (Z) dW); wstart += f * dW; } if(hend > iH){ int f = sd::math::nd4j_ceil((Z) (hend-iH) / (Z) dH); hend -= f * dH; } if(wend > iW){ int f = sd::math::nd4j_ceil((Z) (wend-iW) / (Z) dW); wend -= f * dW; } //Accounts for dilation int pool_size = sd::math::nd4j_ceil((double) (hend-hstart) / (double) dH) * sd::math::nd4j_ceil((double) (wend-wstart) / (double) dW); Z max = -sd::DataTypeUtils::max(); const X *inSlice = x + (n * strideB + c * strideC); for (int h = hstart; h < hend; h += dH) { for (int w = wstart; w < wend; w += dW) { Z v = static_cast(inSlice[h * strideY + w * strideX]); if (v > max) max = v; } } z[n * strideOB + c * strideOC + pw * strideOX + ph * strideOY] = max; } } ////////////////////////////////////////////////////////////////////////// template static void maxPooling2dCudaLauncher(sd::LaunchContext & block, const void *vx, const Nd4jLong *vxShapeInfo, void *vz, const Nd4jLong *vzShapeInfo, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int extraParam0) { maxPooling2dCuda<<<512, 512, 4192, *block.getCudaStream()>>>(vx, vxShapeInfo, vz, vzShapeInfo, kH, kW, sH, sW, pH, pW, dH, dW, extraParam0); } ////////////////////////////////////////////////////////////////////////// void ConvolutionUtils::pooling2d(sd::graph::Context& block, const NDArray& input, NDArray& output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const PoolingType poolingMode, const int extraParam0) { if(!input.isActualOnDeviceSide()) input.syncToDevice(); switch (poolingMode) { case MAX_POOL: { BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), maxPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES); } break; case AVG_POOL: { BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), avgPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES); } break; case PNORM_POOL: { BUILD_SINGLE_SELECTOR_TWICE(input.dataType(), pnormPooling2dCudaLauncher, (*block.launchContext(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), kH, kW, sH, sW, pH, pW, dH, dW, extraParam0), FLOAT_TYPES); } break; default: throw std::runtime_error("Pooling2D: Unknown PoolingType used"); } output.tickWriteDevice(); input.tickReadDevice(); auto result = cudaStreamSynchronize(*block.launchContext()->getCudaStream()); if (result != 0) throw cuda_exception::build("Pooling2D failed", result); } } }