/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 15.02.2018, Alex Black // // implementation of gated Recurrent Unit cell // (cf. https://arxiv.org/abs/1406.1078). // Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio // "Learning Phrase Representations using RNN Encoder-Decoder for StatnIntical Machine Translation" #include #include #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// void gruCell(sd::LaunchContext * context, const NDArray* x, const NDArray* hI, const NDArray* W, const NDArray* Wc, const NDArray* b, const NDArray* bc, NDArray* r, NDArray* u, NDArray* c, NDArray* h) { //Inputs: // x input [bS, nIn], nIn - input size // hI previous cell output [bS, nOut], that is at previous time step t-1, nOut - number of units // W RU weights - [nIn+nOut, 2*nOut] - reset and update gates // Wc C weights - [nIn+nOut, nOut] - cell gate // b r and u biases, [2*nOut] - reset and update gates // bc c biases, [nOut] - cell gate //Outputs: // r Reset gate output [bS, nOut] // u Update gate output [bS, nOut] // c Cell gate output [bS, nOut] // h current cell output [bS, nOut] /***************************************************************************************/ /************************ THIS IS NOT OPTIMAZED CODE ***********************************/ /** however it is more math-friendly and convenient for backprop formulas derivation) **/ const int bS = x->sizeAt(0); const int nIn = x->sizeAt(1); const int nOut = hI->sizeAt(1); NDArray Wrx = (*W)({0,nIn, 0,nOut}); // [nIn, nOut] NDArray Wux = (*W)({0,nIn, nOut,2*nOut}); // [nIn, nOut] NDArray Wrh = (*W)({nIn,nIn+nOut, 0,nOut}); // [nOut, nOut] NDArray Wuh = (*W)({nIn,nIn+nOut, nOut,2*nOut}); // [nOut, nOut] NDArray Wcx = (*Wc)({0,nIn, 0,0}); // reset cell weights [nIn, nOut] NDArray Wch = (*Wc)({nIn,nIn+nOut, 0,0}); // updates cell weights [nOut, nOut] NDArray br = (*b)({0, nOut}); // [nOut] NDArray bu = (*b)({nOut, 2*nOut}); // [nOut] // × means matrix multipication // * means element-wise product or so called Hadamard product // reset gate r->assign(mmul(*x, Wrx) + mmul(*hI, Wrh) + br); // [bS, nIn] × [nIn, nOut] + [bS, nOut] × [nOut, nOut] + [nOut] = [bS, nOut] r->applyTransform(transform::Sigmoid, *r); // update gate u->assign(mmul(*x, Wux) + mmul(*hI, Wuh) + bu); // [bS, nIn] × [nIn, nOut] + [bS, nOut] × [nOut, nOut] + [nOut] = [bS, nOut] u->applyTransform(transform::Sigmoid, *u); // cell gate c = activation(x × Wcx + (r * hlast) × Wch + bc) c->assign(mmul(*x, Wcx) + mmul(*r * *hI, Wch) + *bc); // [bS, nIn] × [nIn, nOut] + [bS, nOut] × [nOut, nOut] + [nOut] = [bS, nOut] c->applyTransform(transform::Tanh, *c); // cell output h->assign(*u * *hI + (1.f - *u) * *c); } ////////////////////////////////////////////////////////////////////////// void gruCell(sd::LaunchContext * context, const NDArray* x, const NDArray* hI, const NDArray* Wx, const NDArray* Wh, const NDArray* b, NDArray* gates, NDArray* h) { //Inputs: // x input [bS, nIn] // hI previous cell output [bS, nOut], that is at previous time step t-1 // Wx weights for x - [nIn, 3*nOut] // Wh weights for h - [nOut, 3*nOut] // b biases [3*nOut] // 3*nOut means following sequence: reset, update, cell //Outputs: // gates [bS, 3*nOut] = reset gate [bS, nOut] + update gate [bS, nOut] + cell gate [bS, nOut] // h current cell output [bS, nOut] // formulas: // zr = x × Wxr + hI × Whr + br // zu = x × Wxu + hI × Whu + bu // r = sigmoid(zr) // u = sigmoid(zu) // zc = x × Wxc + (r * hI) × Whc + bc // c = tanh(zc) // h = (1-u)*c + u*hI const int bS = x->sizeAt(0); const int nIn = x->sizeAt(1); const int nOut = hI->sizeAt(1); NDArray temp = gates->ulike(); MmulHelper::mmul(x, Wx, &temp); // [bS, nIn] × [nIn, 3*nOut] = [bS, 3*nOut] temp += *b; MmulHelper::mmul(hI, Wh, gates); // [bS, nOut] × [nOut, 3*nOut] = [bS, 3*nOut] NDArray ru = (*gates)({0,0, 0,2*nOut}); // [bS, 2*nOut] NDArray r = (*gates)({0,0, 0,nOut}); // [bS, nOut] NDArray u = (*gates)({0,0, nOut,2*nOut}); // [bS, nOut] NDArray c = (*gates)({0,0, 2*nOut,3*nOut}); // [bS, nOut] // reset and update gates ru += temp({0,0, 0,2*nOut}); ru.applyTransform(transform::Sigmoid, ru); // cell gate c.assign(c*r + temp({0,0, 2*nOut, 3*nOut})); c.applyTransform(transform::Tanh, c); // cell output h->assign(u * *hI + (1.f - u) * c); } ////////////////////////////////////////////////////////////////////////// void gruTimeLoop(sd::LaunchContext * context, const NDArray* x, const NDArray* hI, const NDArray* Wx, const NDArray* Wh, const NDArray* b, NDArray* h) { // sL means time steps // x input [sL, bS, nIn] // hI initial cell output (at time step = 0) [bS, nOut] // Wx input-to-hidden weights, [nIn, 3*nOut] // Wh hidden-to-hidden weights, [nOut, 3*nOut] // b biases, [3*nOut] // h cell outputs at each time step [sL, bS, nOut] const int sL = x->sizeAt(0); const int bS = x->sizeAt(1); const int nOut = hI->sizeAt(1); NDArray gates(h->ordering(), {bS, 3*nOut}, h->dataType(), context); auto xSet = x->allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nIn] auto hSet = h->allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nOut] // time loop for (int t = 0; t < sL; ++t) gruCell(context, xSet.at(t), t == 0 ? hI : hSet.at(t-1), Wx, Wh, b, &gates, hSet.at(t)); } ////////////////////////////////////////////////////////////////////////// void gruCellBp(sd::LaunchContext* context, const NDArray* x, const NDArray* hLast, const NDArray* W, const NDArray* Wc, const NDArray* b, const NDArray* bc, const NDArray* dLdr, const NDArray* dLdu, const NDArray* dLdc, const NDArray* dLdh, NDArray* dLdx, NDArray* dLdhLast, NDArray* dLdW, NDArray* dLdWc, NDArray* dLdb, NDArray* dLdbc) { //Inputs: // x input [bS, iS] // hLast previous cell output [bS, nU], that is at previous time step t-1 // W weights - [iS+nU, 2*nU] - reset and update gates // Wc C weights - [iS+nU, nU] - cell gate // b r and u biases, [2*nU] - reset and update gates // bc c biases, [nU] - cell gate // dLdr gradient wrt reset gate, [bS, nU] // dLdu gradient wrt update gate, [bS, nU] // dLdc gradient wrt cell state, [bS, nU] // dLdh gradient wrt current cell output, [bS, nU] //Outputs: // dLdx gradient wrt x, [bS, iS], // dLdhLast gradient wrt hLast, [bS, nU] // dLdW gradient wrt W, [iS+nU, 2*nU] // dLdWc gradient wrt Wc, [iS+nU, nU] // dLdb gradient wrt bru [2*nU] // dLdbc gradient wrt bc [nU] // * means element-wise product or so called Hadamard product // × means matrix multiplication /************************************************************************************************/ /******************************* THIS IS NOT OPTIMAZED CODE *************************************/ /*** aim is to have math-readable code in order to keep track of backprop formulas derivation ***/ const int bS = x->sizeAt(0); const int iS = x->sizeAt(1); const int nU = hLast->sizeAt(1); NDArray xT = x->transpose(); // [iS, bS] NDArray hLastT = hLast->transpose(); // [nU, bS] NDArray Wrx = (*W)({0,iS, 0,nU}); // [iS, nU] NDArray Wux = (*W)({0,iS, nU,2*nU}); // [iS, nU] NDArray Wrh = (*W)({iS,iS+nU, 0,nU}); // [nU, nU] NDArray Wuh = (*W)({iS,iS+nU, nU,2*nU}); // [nU, nU] NDArray Wcx = (*Wc)({0,iS, 0,0}); // reset cell weights [iS, nU] NDArray Wch = (*Wc)({iS,iS+nU, 0,0}); // updates cell weights [nU, nU] NDArray br = (*b)({0, nU}); // [nU] NDArray bu = (*b)({nU, 2*nU}); // [nU] NDArray WrxT = Wrx.transpose(); // [nU, iS] NDArray WuxT = Wux.transpose(); // [nU, iS] NDArray WrhT = Wrh.transpose(); // [nU, nU] NDArray WuhT = Wuh.transpose(); // [nU, nU] NDArray WcxT = Wcx.transpose(); // [nU, iS] NDArray WchT = Wch.transpose(); // [nU, nU] NDArray dLdWrx = (*dLdW)({0,iS, 0,nU}); // [iS, nU] NDArray dLdWux = (*dLdW)({0,iS, nU,2*nU}); // [iS, nU] NDArray dLdWrh = (*dLdW)({iS,iS+nU, 0,nU}); // [nU, nU] NDArray dLdWuh = (*dLdW)({iS,iS+nU, nU,2*nU}); // [nU, nU] NDArray dLdWcx = (*dLdWc)({0,iS, 0,0}); // [iS, nU] NDArray dLdWch = (*dLdWc)({iS,iS+nU, 0,0}); // [nU, nU] NDArray dLdbr = (*dLdb)({0, nU}); // [nU] NDArray dLdbu = (*dLdb)({nU, 2*nU}); // [nU] // ***** feed forward step ***** // // reset gate NDArray r = mmul(*x, Wrx) + mmul(*hLast, Wrh) + br; // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU] r.applyTransform(transform::Sigmoid, r); // update gate NDArray u = mmul(*x, Wux) + mmul(*hLast, Wuh) + bu; // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU] u.applyTransform(transform::Sigmoid, u); // cell gate c = activation(x×Wcx + (r*hlast)×Wcu + bc) NDArray c = mmul(*x, Wcx) + mmul(r * *hLast, Wch) + *bc; // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU] c.applyTransform(transform::Tanh, c); // h = (1 - u) * c + u * hPrev // ***** back prop step ***** // // notations: // Zr = x × Wrx + hLast × Wrh + br // Zu = x × Wux + hLast × Wuh + bu // Sr = sigmoid(Zr) // Su = sigmoid(Zu) // Zc = x × Wcx + (r * hlast) × Wch + bc // dLdx = dLdh * dhdx = dLdh * (dhdu * dudx + dhdc * dcdx) = (dLdh * dhdu) * dudx + (dLdh * dhdc) * dcdx = dLdu * dudx + dLdc * dcdx // = dLdx_u + dLdx_c // dLdx_u = dLdu * dudx = dLdu * dudZu * dZudx = |dZudx = ... × WuxT| = (dLdu * dudZu) × WuxT // dLdx_c = dLdc * dcdx = dLdc * dcdZc * (dZcdx + dZcdr * drdx) = dLdc * dcdZc * dZcdx + dLdc * dcdZc * dZcdr * drdx = dLdx_c0 + dLdx_c1 // dLdx_c0 = dLdc * dcdZc * dZcdx = |dZcdx = ... × WcxT| = (dLdc * dcdZc) × WcxT // dZcdr = (... * hLast) × WchT // dLdc * dcdZc * dZcdr = dLdr = (dLdc * dcdZc * hLast) × WchT // drdx = drdZr * dZrdx // dZrdx = ... × WrxT // dLdx_c1 = dLdc * dcdZc * dZcdr * drdx = dLdr * drdx = (dLdr * drdZr) × WrxT // finally dLdx = dLdx_u + dLdx_c0 + dLdx_c1 = (dLdu * dudZu) × WuxT + (dLdc * dcdZc) × WcxT + (dLdr * drdZr) × WrxT // dLdhLast = dLdh * (dhdhLast + dhdu * dudhLast + dhdc * dcdhLast) = dLdh * dhdhLast + dLdu * dudhLast + dLdc * dcdhLast // = dLdhLast_h + dLdhLast_u + dLdhLast_c // dLdhLast_h = dLdh * dhdhLas = dLdh * u // dLdhLast_u = dLdu * dudhLast = |dudhLast = dudZu * dZudhLast , dZudhLast = ... × WuhT| = (dLdu * dudZu) × WuhT // dLdhLast_c = dLdc * dcdhLast = dLdc * (dcdZc * dZcdhLast + dcdZc * dZcdr * drdhLast) = // = dLdc * dcdZc * dZcdhLast + dLdc * dcdZc * dZcdr * drdhLast = // = dLdc * dcdZc * dZcdhLast + dLdr * drdhLast = dLdhLast_c0 + dLdhLast_c1 // dLdhLast_c0 = dLdc * dcdZc * dZcdhLast = |dZcdhLast = (... * r) × WchT| = (dLdc * dcdZc * r) × WchT // dLdhLast_c1 = dLdr * drdhLast = |drdhLast = drdZr * dZrdhLast, dZrdhLast = ... × WrhT| = (dLdr * drdZr) × WrhT // finally dLdhLast = dLdhLast_h + dLdhLast_u + dLdhLast_c0 + dLdhLast_c1 = // = dLdh * u + (dLdu * dudZu) × WuhT + (dLdc * dcdZc * r) × WchT + (dLdr * drdZr) × WrhT // dLdWrx = dLdh * dhdWrx = (dLdh * dhdc) * dcdWrx = dLdc * dcdZc * dZcdWrx = dLdc * dcdZc * dZcdr * drdWrx = // = dLdc * dcdZc * dZcdr * drdZr * dZrdWrx = dLdr * drdZr * dZrdWrx // dZrdWrx = xT × ... // finally dLdWrx = xT × (dLdr * drdZr) // dLdWrh = dLdh * dhdWrh = (dLdh * dhdc) * dcdWrh = dLdc * dcdZc * dZcdWrh = dLdc * dcdZc * dZcdr * drdWrh = // = dLdc * dcdZc * dZcdr * drdZr * dZrdWrh = dLdr * drdZr * dZrdWrh // dZrdWrh = hLastT × ... // finally dLdWrh = hLastT × (dLdr * drdZr) // dLdWux = dLdh * dhdWux = (dLdh * dhdu) * dudWux = dLdu * dudZu * dZudWux // dZudWux = xT × ... // dLdu * dudZu * dZudWux = xT × (dLdu * dudZu) // dLdWuh = dLdh * dhdWuh = (dLdh * dhdu) * dudWuh = dLdh * dhdu * dudZu * dZudWuh = dLdu * dudZu * dZudWuh // dZudWuh = hLastT × ... // finally dLdWuh = hLastT × (dLdu * dudZu) // dLdWcx = dLdh * dhdWcx = dLdh * dhdc * dcdWcx = (dLdh * dhdc) * dcdZc * dZcdWcx = dLdc * dcdZc * dZcdWcx // dZcdWcx = xT × ... // finally dLdWcx = xT × (dLdc * dcdZc) // dLdWch = dLdh * dhdWch = dLdh * dhdc * dcdWch = (dLdh * dhdc) * dcdZc * dZcdWch = dLdc * dcdZc * dZcdWch // dZcdWch = (r*hLast)^T × ... // finally dLdWch = (r*hLast)^T × (dLdc * dcdZc) // dLdbr = dLdh * dhdbr = (dLdh * dhdc) * dcdbr = dLdc * dcdbr = dLdc * dcdZc * dZcdbr = dLdc * dcdZc * dZcdr * drdbr = // = dLdr * drdZr * dZrdbr // dZrdbr = 1 // finally dLdbr = dLdr * drdZr // dLdbu = dLdh * dhdbu = (dLdh * dhdu) * dudbu = dLdu * dudZu * dZudbu // dZudbu = 1 // finally dLdbu = dLdu * dudZu // dLdbc = dLdh * dhdbc = (dLdh * dhdc) * dcdbc = dLdc * dcdZc * dZcdbc // dZcdbc = 1 // finally dLdbc = dLdc * dcdZc NDArray dhdc = 1.f - u; // [bS, nU] NDArray dhdu = *hLast - c; // [bS, nU] NDArray dudZu = u * dhdc; // [bS, nU] NDArray drdZr = r * (1.f - r); // [bS, nU] NDArray dcdZc = 1.f - c * c; // [bS, nU] NDArray dLdZc = *dLdc * dcdZc; // [bS, nU] NDArray dLdZu = *dLdu * dudZu; // [bS, nU] NDArray dLdZr = *dLdr * drdZr; // [bS, nU] // NDArray dLdc = *dLdh * dhdc; // [bS, nU] // NDArray dLdu = *dLdh * dhdu; // [bS, nU] // NDArray dLdr = mmul(dLdc * dcdZc * *hLast, WchT); // [bS, nU] dLdx->assign(mmul(dLdZu, WuxT) + mmul(dLdZc, WcxT) + mmul(dLdZr, WrxT)); // [bS, iS] dLdhLast->assign(*dLdh * u + mmul(dLdZu, WuhT) + mmul(dLdZc * r, WchT) + mmul(dLdZr, WrhT)); // [bS, nU] dLdWrx.assign(mmul(xT, dLdZr)); // [iS, bS] × [bS, nU] = [iS, nU] dLdWrh.assign(mmul(hLastT, dLdZr)); // [nU, bS] × [bS, nU] = [nU, nU] dLdWux.assign(mmul(xT, dLdZu)); // [iS, bS] × [bS, nU] = [iS, nU] dLdWuh.assign(mmul(hLastT, dLdZu)); // [nU, bS] × [bS, nU] = [nU, nU] dLdWcx.assign(mmul(xT, dLdZc)); // [iS, bS] × [bS, nU] = [iS, nU] dLdWch.assign(mmul((r * *hLast).transpose(), dLdZc)); // [nU, bS] × [bS, nU] = [nU, nU] dLdbr.assign(dLdZr.reduceAlongDimension(reduce::Sum, {0})); // [nU] dLdbu.assign(dLdZu.reduceAlongDimension(reduce::Sum, {0})); // [nU] dLdbc->assign(dLdZc.reduceAlongDimension(reduce::Sum, {0})); // [nU] } ////////////////////////////////////////////////////////////////////////// void gruCellBp(sd::LaunchContext* context, const NDArray* x, const NDArray* hI, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* dLdh, const NDArray* gates, NDArray* dLdx, NDArray* dLdhI, NDArray* dLdWx, NDArray* dLdWh, NDArray* dLdb) { //Inputs: // x input [bS, nIn] // hI previous cell output [bS, nOut], that nIn at previous time step t-1 // Wx input-to-hidden weights - [nIn, 3*nOut] // Wh hidden-to-hidden weights - [nOut, 3*nOut] // b biases, [3*nOut] - reset and update gates // dLdh gradient vs. ff output, [bS, nOut] //Outputs: // dLdx gradient vs. x, [bS, nIn], // dLdhI gradient vs. hI, [bS, nOut] // dLdWx gradient vs. W, [nIn, 3*nOut] // dLdWh gradient vs. Wc, [nOut, 3*nOut] // dLdb gradient vs. b [3*nOut] // 3*nOut means following sequence: reset, update, cell // * means element-wnIne product or so called Hadamard product // × means matrix multiplication // formulas: // zr = x × Wxr + hI × Whr + br // zu = x × Wxu + hI × Whu + bu // r = sigmoid(zr) // u = sigmoid(zu) // zc = x × Wxc + (r * hI) × Whc + bc // c = tanh(zc) // h = (1-u)*c + u*hI // dLdhI += dLdh; [bS, nOut] // dhdc = 1 - u [bS, nOut] // dhdu = -c + hI [bS, nOut] // dcdzc = 1 - c*c; [bS, nOut] // dudzu = u*(1-u) [bS, nOut] // drdzr = r(1-r) [bS, nOut] // dzcdr = (...*hI × WhcT) [bS, nOut] // dLdzr = dLdh*dhdc*dcdzc*dzcdr*drdzr = (dLdzc*hI*r(1-r) × WhcT); [bS, nOut] // dLdzu = dLdh*dhdu*dudzu = dLdh*(hI-c)*u*(1-u) [bS, nOut] // dLdzc = dLdh*dhdc*dcdzc = dLdh*(1-u)*(1-c*c) [bS, nOut] // dLdx = dLdzr × WxrT + dLdzu × WxuT + dLdzc × WxcT, [bs, nOut] × [nOut, nIn] + ... = [bS, nIn] // dLdhI = dLdzr × WhrT + dLdzu × WhuT + dLdzc × WhcT, [bs, nOut] × [nOut, nOut] + ... = [bS, nOut] // dLdWxr = xT × dLdzr [nIn, bS] x [bS, nOut] = [nIn, nOut] // dLdWxu = xT × dLdzu [nIn, bS] x [bS, nOut] = [nIn, nOut] // dLdWxc = xT × dLdzc [nIn, bS] x [bS, nOut] = [nIn, nOut] // dLdWhr = xT × dLdzr [nOut, bS] x [bS, nOut] = [nOut, nOut] // dLdWhu = xT × dLdzu [nOut, bS] x [bS, nOut] = [nOut, nOut] // dLdWhc = (r*hI)T × dLdzc [nOut, bS] x [bS, nOut] = [nOut, nOut] // dLdbr = dLdzr.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut] // dLdbu = dLdzu.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut] // dLdbc = dLdzc.reduce_sum_along_0_axis [bS, nOut] -> reduce -> [nOut] const int nOut = hI->sizeAt(1); NDArray dLdz = gates->ulike(); // [bS, 3*nOut] NDArray dLdzru = dLdz({0,0, 0,2*nOut}); // [bS, 2*nOut] NDArray dLdzr = dLdz({0,0, 0,nOut}); // [bS, nOut] NDArray dLdzu = dLdz({0,0, nOut,2*nOut}); // [bS, nOut] NDArray dLdzc = dLdz({0,0, 2*nOut,3*nOut}); // [bS, nOut] NDArray r = (*gates)({0,0, 0,nOut}); // [bS, nOut] NDArray u = (*gates)({0,0, nOut,2*nOut}); // [bS, nOut] NDArray c = (*gates)({0,0, 2*nOut,3*nOut}); // [bS, nOut] NDArray WhcT = (*Wh)({0,0, 2*nOut,3*nOut}).transpose(); if(dLdh) *dLdhI += *dLdh; NDArray temp1 = 1 - u; // [bS, nOut] // dLdzc dLdzc.assign(*dLdhI * temp1 * (1-c*c)); // [bS, nOut] // dLdzu dLdzu.assign(*dLdhI * (*hI - c) * u * temp1); // [bS, nOut] // dLdzr NDArray temp2 = dLdzc * (*hI) * r *(1-r); MmulHelper::mmul(&temp2, &WhcT, &dLdzr); // [bS, nOut] x [nOut, nOut] = [bS, nOut] // dLdx NDArray WxT = Wx->transpose(); MmulHelper::mmul(&dLdz, &WxT, dLdx); // [bS, 3*nOut] x [3*nOut, nIn] = [bS, nIn] // dLdWx *dLdWx += mmul(x->transpose(), dLdz); // [nIn, bS] x [bS, 3*nOut] = [nIn, 3*nOut] // dLdb *dLdb += dLdz.reduceAlongDimension(reduce::Sum, {0}); // [bS, 3*nOut] -> reduce -> [3*nOut]; dLdzc *= r; // dLdhI NDArray WhT = Wh->transpose(); dLdhI->assign(*dLdhI*u + mmul(dLdz, WhT)); // [bS, 3*nOut] x [3*nOut, nOut] = [bS, nOut] // dLdWr *dLdWh += mmul(hI->transpose(), dLdz); // [nOut, bS] x [bS, 3*nOut] = [nOut, 3*nOut] } ////////////////////////////////////////////////////////////////////////// void gruTimeLoopBp(sd::LaunchContext * context, const NDArray* x, const NDArray* hI, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* dLdh, NDArray* dLdx, NDArray* dLdhI, NDArray* dLdWx, NDArray* dLdWh, NDArray* dLdb) { // sL means time steps // x input [sL, bS, nIn] // hI initial cell output (at time step = 0) [bS, nOut] // Wx input-to-hidden weights, [nIn, 3*nOut] // Wh hidden-to-hidden weights, [nOut, 3*nOut] // b biases, [3*nOut] // dLdh gradient vs. ff output, [sL, bS, nOut] // dLdx gradient vs. x, [sL, bS, nIn], // dLdhI gradient vs. hI, [bS, nOut] // dLdWx gradient vs. W, [nIn, 3*nOut] // dLdWh gradient vs. Wc, [nOut, 3*nOut] // dLdb gradient vs. b [3*nOut] const int sL = x->sizeAt(0); const int bS = x->sizeAt(1); const int nOut = hI->sizeAt(1); NDArray gates(x->ordering(), {sL, bS, 3*nOut}, dLdh->dataType(), x->getContext()); NDArray h(x->ordering(), {sL+1, bS, nOut}, dLdh->dataType(), x->getContext()); auto xSet = x->allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nIn] auto dLdhSet = dLdh->allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nOut] auto hSet = h.allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nOut] auto gatesSet = gates.allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nOut] auto dLdxSet = dLdx->allTensorsAlongDimension({1,2}); // sub-arrays with shape [bS, nIn] hSet.at(0)->assign(hI); // forward time loop for (int t = 0; t < sL; ++t) gruCell(context, xSet.at(t), hSet.at(t), Wx, Wh, b, gatesSet.at(t), hSet.at(t+1)); // backward time loop for (int t = sL-1; t >= 0; --t) gruCellBp(context, xSet.at(t), hSet.at(t), Wx, Wh, b, dLdhSet.at(t), gatesSet.at(t), dLdxSet.at(t), dLdhI, dLdWx, dLdWh, dLdb); } } } }