/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // // #ifndef LIBND4J_HEADERS_CONVOL_H #define LIBND4J_HEADERS_CONVOL_H #include namespace sd { namespace ops { /** * 1D temporal convolution implementation * Expected input: * x: 3D array * weight: 3D Array * bias: optional vector * * Int args: * 0: kernel * 1: stride * 2: padding */ #if NOT_EXCLUDED(OP_conv1d) DECLARE_CUSTOM_OP(conv1d, 2, 1, false, 0, 5); DECLARE_CUSTOM_OP(conv1d_bp, 3, 2, false, 0, 5); #endif /** * 2D convolution implementation * Expected input: * x: 4D array * weight: 4D Array * bias: optional vector, length of outputChannels * * IntArgs: * 0: kernel height * 1: kernel width * 2: stride height * 3: stride width * 4: padding height * 5: padding width * 6: dilation height * 7: dilation width * 8: same mode: 1 true, 0 false * 9: data format: 1 NHWC, 0 NCHW */ #if NOT_EXCLUDED(OP_conv2d) DECLARE_CUSTOM_OP(conv2d, 2, 1, false, 0, 9); DECLARE_CUSTOM_OP(conv2d_bp, 3, 2, false, 0, 9); DECLARE_CUSTOM_OP(conv2d_input_bp, 3, 1, false, 0, 9); #endif /** * Depthwise convolution2d op: * Expected inputs: * x: 4D array, NCHW format * weightsDepth: 4D array, * weightsPointwise: optional, 4D array * bias: optional, vector */ #if NOT_EXCLUDED(OP_sconv2d) DECLARE_CUSTOM_OP(sconv2d, 2, 1, false, 0, 9); DECLARE_CUSTOM_OP(sconv2d_bp, 3, 2, false, 0, 9); #endif /** * 2D deconvolution implementation * * IntArgs: * 0: kernel height * 1: kernel width * 2: stride height * 3: stride width * 4: padding height * 5: padding width * 6: dilation height * 7: dilation width * 8: same mode: 0 false, 1 true */ #if NOT_EXCLUDED(OP_deconv2d) DECLARE_CUSTOM_OP(deconv2d, 2, 1, false, 0, 9); DECLARE_CUSTOM_OP(deconv2d_bp, 3, 2, false, 0, 9); #endif /** * 3D deconvolution implementation * * IntArgs: * 0: filter(kernel) depth * 1: filter(kernel) height * 2: filter(kernel) width * 3: strides depth * 4: strides height * 5: strides width * 6: paddings depth * 7: paddings height * 8: paddings width * 9: dilations depth * 10: dilations height * 11: dilations width * 12: same mode: 0 false, 1 true * 13: data format (optional): 0-NDHWC, 1-NCDHW, default is 1 */ #if NOT_EXCLUDED(OP_deconv3d) DECLARE_CUSTOM_OP(deconv3d, 2, 1, false, 0, 13); DECLARE_CUSTOM_OP(deconv3d_bp, 3, 2, false, 0, 13); #endif /** * This op implements max pooling for convolution networks. * Expected Input: 4D array, NCHW format. * * IntArgs: * 0: kernel height * 1: kernel width * 2: stride height * 3: stride width * 4: padding height * 5: padding width * 6: dilation height * 7: dilation width * 8: same mode: 0 false, 1 true */ #if NOT_EXCLUDED(OP_maxpool2d) DECLARE_CUSTOM_OP(maxpool2d, 1, 1, false, 0, 10); DECLARE_CUSTOM_OP(maxpool2d_bp, 2, 1, false, 0, 10); #endif /** * This op implements average pooling for convolution networks. * Expected Input: 4D array, NCHW format. * * IntArgs: * 0: kernel height * 1: kernel width * 2: stride height * 3: stride width * 4: padding height * 5: padding width * 6: dilation height * 7: dilation width * 8: same mode: 0 false, 1 true */ #if NOT_EXCLUDED(OP_avgpool2d) DECLARE_CUSTOM_OP(avgpool2d, 1, 1, false, 0, 10); DECLARE_CUSTOM_OP(avgpool2d_bp, 2, 1, false, 0, 10); #endif /** * This op implements pnorm pooling for convolution networks. * Expected Input: 4D array, NCHW format. * * IntArgs: * 0: kernel height * 1: kernel width * 2: stride height * 3: stride width * 4: padding height * 5: padding width * 6: dilation height * 7: dilation width * 8: same mode: 0 false, 1 true * 9: p for p-norm */ #if NOT_EXCLUDED(OP_pnormpool2d) DECLARE_CUSTOM_OP(pnormpool2d, 1, 1, false, 0, 10); DECLARE_CUSTOM_OP(pnormpool2d_bp, 2, 1, false, 1, 10); #endif /** * This op implements im2col algorithm, widely used in convolution neural networks * Input: 4D input expected * * Int args: * 0: kernel height * 1: kernel width * 2: stride height * 3: stride width * 4: padding height * 5: padding width * 6: dilation height * 7: dilation width * 8: isSameMode */ #if NOT_EXCLUDED(OP_im2col) DECLARE_CUSTOM_OP(im2col, 1, 1, false, 0, 9); DECLARE_CUSTOM_OP(im2col_bp, 2, 1, false, 0, 9); #endif /** * This op implements col2im algorithm, widely used in convolution neural networks * Input: 6D input expected (like output of im2col op) * * Int args: * 0: stride height * 1: stride width * 2: padding height * 3: padding width * 4: image height * 5: image width * 6: dilation height * 7: dilation width */ #if NOT_EXCLUDED(OP_col2im) DECLARE_CUSTOM_OP(col2im, 1, 1, false, 0, 9); #endif /** * Expected input: 4D array * * IntArgs: * 0: scale factor for rows (height) * 1: scale factor for columns (width) * 2: data format: 0 NHWC (default), 1 NCHW */ #if NOT_EXCLUDED(OP_upsampling2d) DECLARE_CUSTOM_OP(upsampling2d, 1, 1, false, 0, 2); DECLARE_CUSTOM_OP(upsampling2d_bp, 2, 1, false, 0, 0); #endif /** * Expected input: 4D array * * IntArgs: * 0: scale factor for depth * 1: scale factor for rows (height) * 2: scale factor for columns (width) * 3: data format: 0 NDHWC (default), 1 NCDHW */ #if NOT_EXCLUDED(OP_upsampling3d) DECLARE_CUSTOM_OP(upsampling3d, 1, 1, false, 0, 3); DECLARE_CUSTOM_OP(upsampling3d_bp, 2, 1, false, 0, 0); #endif /** * This op produces binary matrix wrt to target dimension. * Maximum value within each TAD is replaced with 1, other values are set to true. * * Int args: * 0: axis */ #if NOT_EXCLUDED(OP_ismax) DECLARE_CONFIGURABLE_OP(ismax, 1, 1, true, 0, -2); #endif /** * Dilation2D op * * Int args: * 0: isSameMode */ #if NOT_EXCLUDED(OP_dilation2d) DECLARE_CUSTOM_OP(dilation2d, 2, 1, false, 0, 1); #endif #if NOT_EXCLUDED(OP_conv3dnew) DECLARE_CUSTOM_OP(conv3dnew, 2, 1, false, 0, 13); DECLARE_CUSTOM_OP(conv3dnew_bp, 3, 2, false, 0, 13); #endif #if NOT_EXCLUDED(OP_avgpool3dnew) DECLARE_CUSTOM_OP(avgpool3dnew, 1, 1, false, 0, 10); DECLARE_CUSTOM_OP(avgpool3dnew_bp, 2, 1, false, 0, 10); #endif #if NOT_EXCLUDED(OP_maxpool3dnew) DECLARE_CUSTOM_OP(maxpool3dnew, 1, 1, false, 0, 10); DECLARE_CUSTOM_OP(maxpool3dnew_bp, 2, 1, false, 0, 10); #endif /** * This op same as maxpool2d with a variant to return a matrix of indexes for max values * * Input - 4D tensor * Output: * 0 - 4D tensor as input * 1 - 4D tensor with max value indexes * * Int params: * 9 int with 2x4 vectors and 1 bool value */ #if NOT_EXCLUDED(OP_max_pool_woth_argmax) DECLARE_CUSTOM_OP(max_pool_with_argmax, 1, 2, false, 0, 9); #endif #if NOT_EXCLUDED(OP_depthwise_conv2d) DECLARE_CUSTOM_OP(depthwise_conv2d, 2, 1, false, 0, 9); DECLARE_CUSTOM_OP(depthwise_conv2d_bp, 3, 2, false, 0, 9); #endif /** * point-wise 2D convolution * Expected input: * x: 4D array * weight: 4D Array [1, 1, iC, oC] (NHWC) or [oC, iC, 1, 1] (NCHW) * bias: optional vector, length of oC * * IntArgs: * 0: data format: 1 NHWC, 0 NCHW (optional, by default = NHWC) */ DECLARE_CUSTOM_OP(pointwise_conv2d, 2, 1, false, 0, 0); DECLARE_CUSTOM_OP(deconv2d_tf, 2, 1, false, 0, 0); } } #endif