/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119, created on 29/10/17. // @author Yurii Shyrma, changed on 20.03.2018 // #include #if NOT_EXCLUDED(OP_sconv2d) #include #include #include namespace sd { namespace ops { CUSTOM_OP_IMPL(sconv2d, 2, 1, false, 0, 9) { NDArray *input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) NDArray *weightsDepth = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] NDArray *weightsPoint = nullptr; // [1, 1, iC*mC, oC], [oC, iC*mC, 1, 1], [oC, 1, 1, iC*mC] NDArray *bias = nullptr; // [oC], if weightsPoint=nullptr then oC = iC*mC NDArray *output = OUTPUT_NULLIFIED(0); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW) if(block.width() == 3) { if((INPUT_VARIABLE(2))->rankOf() == 4) weightsPoint = INPUT_VARIABLE(2); else bias = INPUT_VARIABLE(2); } else if(block.width() == 4) { weightsPoint = INPUT_VARIABLE(2); bias = INPUT_VARIABLE(3); } REQUIRE_TRUE(input->rankOf() == 4, 0, " SCONV2D OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weightsDepth->rankOf() == 4, 0, " SCONV2D OP: rank of weightsDepth array must be equal to 4, but got %i instead !", weightsDepth->rankOf()); if(weightsPoint) REQUIRE_TRUE(weightsPoint->rankOf() == 4, 0, " SCONV2D OP: rank of weightsPoint array must be equal to 4, but got %i instead !", weightsPoint->rankOf()); if(bias) REQUIRE_TRUE(bias->rankOf() == 1 || bias->rankOf() == 2, 0, " SCONV2D OP: rank of biases array must be equal to 1 or 2, but got %i instead !", bias->rankOf());; int kH = INT_ARG(0); // filter(kernel) height int kW = INT_ARG(1); // filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier, output channels, output height/width int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weightsDepth->sizeAt(indWmC); // channels multiplier std::vector expectedWeightsDShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC); REQUIRE_TRUE(weightsDepth->isSameShape(expectedWeightsDShape), 0, " SCONV2D OP: wrong shape of weightsDepth array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsDShape).c_str(), ShapeUtils::shapeAsString(weightsDepth).c_str()); if(weightsPoint) { std::vector expectedWeightsPShape = ConvolutionUtils::expectWeightsShape(wFormat, 1, 1, iC*mC, oC); REQUIRE_TRUE(weightsPoint->isSameShape(expectedWeightsPShape), 0, " SCONV2D OP: wrong shape of weightsPoint array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsPShape).c_str(), ShapeUtils::shapeAsString(weightsPoint).c_str()); } if (bias) REQUIRE_TRUE(oC == bias->lengthOf(), 0, " SCONV2D OP: length of bias array must be equal to outChannels, but got %i instead", bias->lengthOf()); if (iC == 1) { nd4j_debug("SCONV2D OP: for input_channels = 1 this op is equivalent to standard conv2d\n",""); ConvolutionUtils::conv2d(block, input, weightsDepth, bias, output, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW, wFormat); return Status::OK(); } ConvolutionUtils::sconv2d(block, input, weightsDepth, weightsPoint, bias, output, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW, wFormat); return Status::OK(); } DECLARE_TYPES(sconv2d) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(sconv2d) { auto inputShapeInfo = inputShape->at(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) auto weightsDShapeInfo = inputShape->at(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] Nd4jLong const* weightsPShapeInfo = nullptr; // [1, 1, iC*mC, oC], [oC, iC*mC, 1, 1], [oC, 1, 1, iC*mC] Nd4jLong const* biasShapeInfo = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr if(block.width() == 3) if(inputShape->at(2)[0] == 4) weightsPShapeInfo = inputShape->at(2); else biasShapeInfo = inputShape->at(2); else if(block.width() == 4) { weightsPShapeInfo = inputShape->at(2); biasShapeInfo = inputShape->at(3); } const int rank = 4; REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "SCONV2D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]); REQUIRE_TRUE(weightsDShapeInfo[0] == rank, 0, "SCONV2D OP: rank of weightsDepth array must be equal to %i, but got %i instead !", rank, weightsDShapeInfo[0]); if(weightsPShapeInfo) REQUIRE_TRUE(weightsPShapeInfo[0] == rank, 0, "SCONV2D OP: rank of weightsPoint array must be equal to %i, but got %i instead !", rank, weightsPShapeInfo[0]); if(biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2, 0, "SCONV2D OP: rank of biases array must be <= 2, but got %i instead !", biasShapeInfo[0]);; int kH = INT_ARG(0); // filter(kernel) height int kW = INT_ARG(1); // filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] int indIOioC, indIiH, indWmC(0 == wFormat ? 3 : 0); if(!isNCHW) { indIOioC = 3; indIiH = 1; } else { indIOioC = 1; indIiH = 2; } const int bS = inputShapeInfo[1]; // batch size const int iH = inputShapeInfo[indIiH+1]; // input height const int iW = inputShapeInfo[indIiH+2]; // input width const int iC = inputShapeInfo[indIOioC+1]; // input channels const int mC = weightsDShapeInfo[indWmC+1]; // channel multiplier const int oC = weightsPShapeInfo ? weightsPShapeInfo[indWmC+1] : iC*mC; // output channels (oC or iC*mC) std::vector expectedWeightsDShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsDShapeInfo, expectedWeightsDShape), 0, "SCONV2D OP: wrong shape of depth weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsDShape).c_str(), ShapeUtils::shapeAsString(weightsDShapeInfo).c_str()); if(weightsPShapeInfo) { std::vector expectedWeightsPShape = ConvolutionUtils::expectWeightsShape(wFormat, 1, 1, iC*mC, oC); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsPShapeInfo, expectedWeightsPShape), 0, "SCONV2D OP: wrong shape of point array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsPShape).c_str(), ShapeUtils::shapeAsString(weightsPShapeInfo).c_str()); } if (biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "SCONV2D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); int oH, oW; // output height, width ConvolutionUtils::calcOutSizePool2D(oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode); Nd4jLong* outputShapeInfo = nullptr; ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo), Nd4jLong); outputShapeInfo[0] = 4; outputShapeInfo[1] = bS; if (isNCHW) { outputShapeInfo[2] = oC; outputShapeInfo[3] = oH; outputShapeInfo[4] = oW; } else { outputShapeInfo[2] = oH; outputShapeInfo[3] = oW; outputShapeInfo[4] = oC; } ShapeUtils::updateStridesAndType(outputShapeInfo, weightsDShapeInfo, shape::order(inputShapeInfo)); return SHAPELIST(CONSTANT(outputShapeInfo)); } DECLARE_TYPES(sconv2d_bp) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } //////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(sconv2d_bp, 3, 2, false, 0, 9) { NDArray *input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) NDArray *gradO = INPUT_VARIABLE(1); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next NDArray *weightsDepth = INPUT_VARIABLE(2); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] NDArray *weightsPoint = nullptr; // [1, 1, iC*mC, oC], [oC, iC*mC, 1, 1], [oC, 1, 1, iC*mC] NDArray *bias = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr NDArray *gradI = OUTPUT_NULLIFIED(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon NDArray *gradWD = OUTPUT_NULLIFIED(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] NDArray *gradWP = nullptr; // [1, 1, iC*mC, oC], [oC, iC*mC, 1, 1], [oC, 1, 1, iC*mC] NDArray *gradB = nullptr; // [oC] if(block.width() == 4) { if((INPUT_VARIABLE(3))->rankOf() == 4) { weightsPoint = INPUT_VARIABLE(3); gradWP = OUTPUT_NULLIFIED(2); } else { bias = INPUT_VARIABLE(3); gradB = OUTPUT_NULLIFIED(2); } } else if(block.width() == 5) { weightsPoint = INPUT_VARIABLE(3); bias = INPUT_VARIABLE(4); gradWP = OUTPUT_NULLIFIED(2); gradB = OUTPUT_NULLIFIED(3); } REQUIRE_TRUE(input->rankOf() == 4, 0, " SCONV2D_BP OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 4, 0, " SCONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf()); REQUIRE_TRUE(weightsDepth->rankOf() == 4, 0, " SCONV2D_BP OP: rank of weightsDepth array must be equal to 4 !, but got %i instead !", weightsDepth->rankOf()); if(weightsPoint) { REQUIRE_TRUE(weightsPoint->rankOf() == 4, 0, " SCONV2D_BP OP: rank of weightsPoint array must be equal to 4, but got %i instead !", weightsPoint->rankOf()); REQUIRE_TRUE(gradWP->rankOf() == 4, 0, " SCONV2D_BP OP: rank of weightsPoint gradients array must be equal to 4, but got %i instead !", gradWP->rankOf()); } if(bias) { REQUIRE_TRUE(bias->rankOf() == 1 || bias->rankOf() == 2, 0, " SCONV2D_BP OP: rank of biases array must be equal to 1 or 2, but got %i instead !", bias->rankOf()); REQUIRE_TRUE(gradB->rankOf() == 1 || gradB->rankOf() == 2, 0, " SCONV2D_BP OP: rank of biases gradientsarray must be equal to 1 or 2, but got %i instead !", gradB->rankOf()); } int kH = INT_ARG(0); // filter(kernel) height int kW = INT_ARG(1); // filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier, output channels, output height/width int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weightsDepth->sizeAt(indWmC); // channels multiplier std::vector expectedWeightsDShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC); REQUIRE_TRUE(weightsDepth->isSameShape(expectedWeightsDShape), 0, " SCONV2D_BP OP: wrong shape of weightsDepth array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsDShape).c_str(), ShapeUtils::shapeAsString(weightsDepth).c_str()); REQUIRE_TRUE(gradWD->isSameShape(expectedWeightsDShape), 0, " SCONV2D_BP OP: wrong shape of gradWD array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsDShape).c_str(), ShapeUtils::shapeAsString(gradWD).c_str()); if(weightsPoint) { std::vector expectedWeightsPShape = ConvolutionUtils::expectWeightsShape(wFormat, 1, 1, iC*mC, oC); REQUIRE_TRUE(weightsPoint->isSameShape(expectedWeightsPShape), 0, " SCONV2D_BP OP: wrong shape of weightsPoint array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsPShape).c_str(), ShapeUtils::shapeAsString(weightsPoint).c_str()); REQUIRE_TRUE(gradWP->isSameShape(expectedWeightsPShape), 0, " SCONV2D_BP OP: wrong shape of gradWP array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsPShape).c_str(), ShapeUtils::shapeAsString(gradWP).c_str()); } if (bias) { REQUIRE_TRUE(oC == bias->lengthOf(), 0, " SCONV2D_BP OP: length of bias array must be equal to outChannels, but got %i instead", bias->lengthOf()); REQUIRE_TRUE(oC == gradB->lengthOf(), 0, " SCONV2D_BP OP: length of biases gradients array must be equal to outChannels, but got %i instead", gradB->lengthOf()); } // if (iC == 1) { // nd4j_debug(" SCONV2D_BP OP: for input_channels=1 this op is equivalent to standard conv2d_bp \n",""); // sd::ops::conv2d_bp op; // return op.execute(&block); // } // ----- if weightsPoint is present, perform pointwise backprop first and calculate gradWP at this step ----- // if (weightsPoint){ auto resultFFShape = isNCHW ? std::vector({bS, mC*iC, oH, oW}) : std::vector({bS, oH, oW, mC*iC}); auto resultFF = NDArrayFactory::create_(input->ordering(), resultFFShape, input->dataType(), block.launchContext()); ConvolutionUtils::sconv2d(block, input, weightsDepth, nullptr, nullptr, resultFF, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW, wFormat); auto gradIDepthShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC*mC,oH,oW, 0,indIOioC,indIiH,indIiH+1}); auto gradIDepth = NDArrayFactory::create_(resultFF->ordering(), gradIDepthShape, resultFF->dataType(), block.launchContext()); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW) ConvolutionUtils::conv2dBP(block, resultFF, weightsPoint, bias, gradO, gradIDepth, gradWP, gradB, 1,1, 1,1, 0,0, 1,1, isSameMode, isNCHW, wFormat); // in this case oH=iH and oW=iW gradO = gradIDepth; bias = gradB = nullptr; // if pointwise backprop was done then don't calculate gradB at depthwise_conv2d_bp step delete resultFF; } // ----- apply depthwise_conv2d_bp ----- // ConvolutionUtils::depthwiseConv2dBP(block, input, weightsDepth, bias, gradO, gradI, gradWD, gradB, kH,kW, sH,sW, pH,pW, dH,dW, isSameMode, isNCHW, wFormat); if(weightsPoint) delete gradO; return Status::OK(); } DECLARE_SHAPE_FN(sconv2d_bp) { auto inputShapeInfo = inputShape->at(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) auto gradOShapeInfo = inputShape->at(1); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next auto weightsDShapeInfo = inputShape->at(2); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] Nd4jLong const* weightsPShapeInfo = nullptr; // [1, 1, iC*mC, oC], [oC, iC*mC, 1, 1], [oC, 1, 1, iC*mC] Nd4jLong const* biasShapeInfo = nullptr; // [oC], oC = iC*mC if weightsPoint=nullptr if(block.width() == 4) { if(inputShape->at(3)[0] == 4) weightsPShapeInfo = inputShape->at(3); else biasShapeInfo = inputShape->at(3); } else if(block.width() == 5) { weightsPShapeInfo = inputShape->at(3); biasShapeInfo = inputShape->at(4); } const int rank = 4; REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]); REQUIRE_TRUE(gradOShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradOShapeInfo[0]); REQUIRE_TRUE(weightsDShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of weightsDepth array must be equal to %i, but got %i instead !", rank, weightsDShapeInfo[0]); if(weightsPShapeInfo) REQUIRE_TRUE(weightsPShapeInfo[0] == rank, 0, " SCONV2D_BP OP: rank of weightsPoint array must be equal to %i, but got %i instead !", rank, weightsPShapeInfo[0]); if(biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] ==1 || biasShapeInfo[0] == 2, 0, " SCONV2D_BP OP: rank of biases array must be 1 or 2, but got %i instead !", biasShapeInfo[0]);; int kH = INT_ARG(0); // filter(kernel) height int kW = INT_ARG(1); // filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] int indIOioC, indIiH, indWmC(0 == wFormat ? 3 : 0); if(!isNCHW) { indIOioC = 3; indIiH = 1; } else { indIOioC = 1; indIiH = 2; } const int bS = inputShapeInfo[1]; // batch size const int iH = inputShapeInfo[indIiH+1]; // input height const int iW = inputShapeInfo[indIiH+2]; // input width const int iC = inputShapeInfo[indIOioC+1]; // input channels const int mC = weightsDShapeInfo[indWmC+1]; // channel multiplier const int oC = weightsPShapeInfo ? weightsPShapeInfo[indWmC+1] : iC*mC; // output channels (oC or iC*mC) int trueoH, trueoW; // true output height, width ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode); std::vector expectedGradOShapeInfo = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indIiH,indIiH+1}); REQUIRE_TRUE(ShapeUtils::areShapesEqual(gradOShapeInfo, expectedGradOShapeInfo), 0, "SCONV2D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShapeInfo).c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str()); std::vector expectedWeightsDShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsDShapeInfo, expectedWeightsDShape), 0, "SCONV2D_BP OP: wrong shape of depth weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsDShape).c_str(), ShapeUtils::shapeAsString(weightsDShapeInfo).c_str()); if(weightsPShapeInfo) { std::vector expectedWeightsPShape = ConvolutionUtils::expectWeightsShape(wFormat, 1, 1, iC*mC, oC); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsPShapeInfo, expectedWeightsPShape), 0, "SCONV2D_BP OP: wrong shape of point array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsPShape).c_str(), ShapeUtils::shapeAsString(weightsPShapeInfo).c_str()); } if (biasShapeInfo) REQUIRE_TRUE((biasShapeInfo[0] == 1 || biasShapeInfo[0] == 2) && oC == shape::length(biasShapeInfo), 0, "SCONV2D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace()); auto gradWDshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsDShapeInfo, gradOShapeInfo, false, block.getWorkspace()); Nd4jLong* gradWPshapeInfo(nullptr), *gradBshapeInfo(nullptr); if(weightsPShapeInfo && biasShapeInfo) { gradWPshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsPShapeInfo, gradOShapeInfo, false, block.getWorkspace()); gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo), CONSTANT(gradWPshapeInfo), CONSTANT(gradBshapeInfo)); } if(weightsPShapeInfo && !biasShapeInfo) { gradWPshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsPShapeInfo, gradOShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo), CONSTANT(gradWPshapeInfo)); } if(!weightsPShapeInfo && biasShapeInfo) { gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo), CONSTANT(gradBshapeInfo)); } return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWDshapeInfo)); } } } #endif